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Lecture 1 — Part |
The Study of Social Behaviors

A Clinical Example



Class Objectives

e Learn about natural behaviors from a biorhythmic perspective
* Learn about levels of behavioral description and their applications
* Translate existing methods in brain science to behavioral science

* Learn about biosensors
1. What types of wearable biosensors are out there at our reach
2. What are some caveats
3. How to scale their use from lab basic science to e.g. 10K+ users

Copyright 2019 Elizabeth B Torres



Digital ADOS-2: An example of
the use of wearables in research
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Social Behaviors as Complex Dynamical Systems:
Augmenting Observation (Macro-) with Sensors (Micro-) Levels

Dyadic
‘nteraC“on

Interaction

MACRO-LEVEL MICRO-LEVEL
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Cohesiveness -- Shared Biorhythms Hidden to the Naked Eye

Interaction

MICRO-LEVEL
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What biorhythms can we use to study social interactions?

Eye Movements

Other Biorhythms
Pupil dilation
Cortisol in saliva
Skin electrodermal activity
Respiration (Heart R peaks)
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What other biorhythms can we use to study social interactions?

RIGHT HAND FEMALE

Segments by Pauses FEMALE

Other Biorhythms
Bodily Kinematics
Hearth Activity
Electrodermal Activity
Anything that fluctuates over time
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https://www.phasespace.com/

What other biorhythms can we use to study social interactions?
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Other Biorhythms
Bodily Kinematics
Hearth Activity
Electrodermal Activity
Anything that fluctuates over time
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https://www.xsens.com/products/mvn-animate?hsCtaTracking=0031f976-823a-4074-8cc4-d6f2347422ae%7C584bb7ed-596e-4dd6-992d-245825acf04f

What do they all have in common?

Involuntary — largely beneath awareness Physical Sensors

Time series data (dynamically changing)

Highly variable
(peaks and valleys shifting amplitude and timing)

Become periodic at different frequencies A J
Proxy Sensors

Form synergies

Can be harnessed with off-the-shelf technology

Can measure behavior continuously during natural activities
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How are they different?

Camera based systems have a layer of inference that
depends on external factors (occlusion, light sources,
stability of body parts, etc.)

Physical sensors read out the output of the biorhythmic
motions that are self-generated by the nervous systems

Motion artifacts (introduced by physical motions, e.g. EEG,
MEG, etc.) vs external artifacts (fMRI, image-based pose
estimation, etc.)

Different physical units (e.g. mV, cm, deg, etc.) vs pixels, light
intensity, etc.

Physical Sensors
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Different levels of
Description of Social
Behaviors

* Discrete scales, mostly based on
opinion (Likert scale)

 May use instruments like video
recordings (manually decode
them) very subjective too but
captures more than by naked eye

* Video based analyses of
kinematics

* Physical sensors “listening” to
biorhythms (heart, cortical
neuronal spikes, EMG, EEG, etc

e Mathematical models to simulate
aspects of behaviors
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Social Behaviors Measured (Discretely) by Clinical Tests
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The Certified Clinician Evokes, Responds, Rates Social Overtures

 Evoke responses through social presses
* Observes child’s social overtures
 Responds to the child

* Rates the child’s responses

* Inevitably misses important information

 Micro-level digital technology to the rescue

Copyright 2019 Elizabeth B Torres



Integration of Macro- and Micro-Levels of Behavioral Description
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https://www.apdm.com/wearable-sensors/

From Raw Data to Micro-Movement Spikes
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Sample Pipeline to create Micro-Movement Spikes
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How do we leverage wearable sensors?
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A Parameterization of Digital Data (Frequency Domain Analyses)
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Whyatt & Torres 2017; Kalampratsiduo & Torres, 2018; Bockadia et al 2020
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Digitized ADOS Network Representation
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Digitized Autism Diagnosis Observation Schedule (ADOS)
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Digitized ADOS Lead-Lag Profile
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An Index of Lead-Lag (% time who leads the conversation?)

In this task, the child is asked to assemble blocks to
construct a design shown on a printed form.

Clinician I:ICT l:Il't"IBIT:iJIP I:IDP I:ICR I:IEM EISDA I.'.IDT EITSBEICT'EBK .
The purpose of the task is solely to create an

opportunity for the child to ask for help, not to

d measure his or her motor or visual-spatial skills.

EPO01: Lead-Lag Profile per TASK order
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How do we Measure Dyadic Variability at the Micro-Level?
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An Index of Micro-movements Variability (temporal domain)

EPO1: Dyad variability per task order
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An Index of Dyadic Cross-Coherence (Frequency Domain)
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An Example of Combining Macro-

DyadicCoherence
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Implicit Mirroring Effect Induces Bias in the Rater
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Temporal Dynamics of Leading Patterns

Dyadic Interaction during Visit-1
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How can we scale this basic science experiment to
e.g. 10,000 users?

* Need to educate health professionals on the neuroscience of nervous systems
development

* Create certification pro%rams that combine many different players ranging from
educators to health professionals to researchers across many fields

* Need to translate the science to layman terms

* Need to engage the community to create legislation that brings science to the
forefront

* Learn and help others; apply your knowledge; take control; create opportunity for
agency
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summary

* Bodily biorhythms can reveal hidden aspects of social behaviors

* Normalizations that account for anatomical differences are important in
motion analyses

* These type of data provide information about bodily biorhythms shared
between two people and about those owing to synergistic activities of the
person’s body.

* Both temporal and frequency domain based indexes are informative

* Combining discrete scores from observation and micro-level signals brings
a more complete, broader and deeper picture of the complex unfolding
dynamics of a social exchange.
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Class Objectives

e Learn about natural behaviors from a biorhythmic perspective
* Learn about levels of behavioral description and their applications
* Translate existing methods in brain science to behavioral science

* Learn about biosensors
1. What types of wearable biosensors are out there at our reach
2. What are some caveats
3. How to scale their use from lab basic science to e.g. 10K+ users
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N class

* We will watch another example of data analyses for dyadic
interactions (Lecture Part Il)

* We will play with the data to learn how to plot it
* We will learn about kinematics and variability

* We will learn about the micro-movement spikes MMS and the
Gamma estimation process

 We will learn about network connectivity analyses
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