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Abstract This work investigated whether fundamental

differences emerged between segments of complex move-

ment sequences performed at different instructed speeds.

To this end, we tested 5 novices and 1 karate expert as they

performed beginner’s martial arts routines. We found that

if one blindly took these segments and separated them

according to the variability of trajectory parameters, one

could unambiguously group two classes of movements

between the same two space regions: one type that

remained quite conserved despite speed changes and

another type that changed with speed level. These groups

corresponded to functionally different movements (strike

segments explicitly directed to a set of goals and

spontaneously retracting segments supplementing the

goals). The curvature of the goal-directed segments

remained quite conserved despite speed changes, yet the

supplemental movements spanned families of trajectories

with different curvature according to the speed. Likewise,

the values of the hand’s peak velocity across trials were

more variable in supplemental segments, and for each

participant, there were different statistical signatures of

variability between the two movement classes. This

dichotomy between coexisting movement classes of our

natural actions calls for a theoretical characterization. The

present experimental results strongly suggest that two

separate sets of principles may govern these movement

classes in complex natural behaviors, since under different

dynamics the hand did not describe a unique family of

trajectories between the same two points in the 3D space.

Keywords Goal-directed movements � Supplemental

movements � Speeds � Blind classification � Kinesthetic

sense � Martial arts � Maximum velocity

Introduction

Movement research mainly focuses on goal-oriented

behavior; however, a large portion of our everyday natural

movements are orchestrated without a deliberate goal in

mind and largely without our conscious awareness. This

class of movements may go by many names, but here will

be referred to as supplemental movements, movements that

are collateral to the main goals of a task.

Dancers, musicians, athletes, and their photographers

have long been familiar with spontaneous transitional

movements that supplement the staged portions of their

choreographies (Marey 1874; Marey and Pritchard 1895)
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yet a thoroughgoing understanding of the contributions of

supplemental movements to natural behavior has remained

elusive.

Spontaneous movements emerge earlier than goal-

directed movements during development. They eventually

come to support goal-directed behaviors. By the age of

three, the system has made a clear transition from purely

spontaneous to goal-directed movements (Smith and The-

len 1993). In fact, one of the telltale markers that there is a

neurodevelopmental problem is precisely atypical patterns

of spontaneous movements in newborns (Karmel et al.

2010; Karmel and Gardner 2005; Gargner et al. 1990).

Upon the early surfacing of goal-directed movements in

infants, by the age of four, signatures of mature kinematics

(e.g., a unique speed maximum) appear in point to point,

reaching movements (Konczak and Dichgans 1997; Ber-

thier and Keen 2006; Konczak and Thelen 1994; von

Hofsten and Lindhagen 1979; von Hofsten 1991). These

unique features remain stable throughout adulthood (Mor-

asso 1983; Abend et al. 1982) even after recovery from

exposure to perturbations of external dynamics (Shadmehr

and Mussa-Ivaldi 1994; Conditt and Mussa-Ivaldi 1999),

unless a stroke or some neurodegenerative disease affects

the individual (Torres et al. 2010, 2011).

We know a great deal about goal-directed behavior,

especially about reaching behaviors, but spontaneous tran-

sitional movements present in complex sequential behaviors

of daily living activities remain largely under-explored. Such

movements are an integral part of a possible hierarchical

gradient of coexisting modes of control (Fig. 1) whose inter-

relations seem critical for well-coordinated fluid behavior.

The upsetting of the delicate balance among these modes can

be readily appreciated in movement disorders such as Par-

kinson’s disease (Redgrave et al. 2010) where the loss of

automated control impedes the expression of fluid goal-ori-

ented behaviors. Statistical patterns of variability present in

the hand trajectory parameters of such compromised systems

have been recently identified in the context of reaching

sequences that require the balance between goal-directed

and spontaneous transitional movements (Torres et al. 2010,

2011). Yet, how these statistical patterns manifest in com-

plex sequential body movements remains unknown.

The labels of choice to define the proposed hierarchy in

Fig. 1 are somewhat arbitrary and arguable, yet they

illustrate potential differences in the levels of control. Our

question is whether such gradual differences also manifest

in the movement variability across repetitions of different

movements that map onto different levels of functionality.

Specifically, we ask whether changes in speed have dif-

ferent consequences on the trajectories described by staged

goal-directed movements than in those described by

spontaneous transitional movements that supplement the

main goals of a task.

Besides the evidence from the developmental and clin-

ical literatures, our quest is partly motivated by previous

research on point to point movements of the reaching

family which were aimed at a visual target. It has been

reported that such goal-directed movements conserved the

hand trajectories despite instructed speed changes (Nis-

hikawa et al. 1999), loads applied to the arm (Atkeson and

Hollerbach 1985), complex postures (Guigon et al. 2007),

and changes in required target orientations (Torres and

Zipser 2004) that altered the movement dynamics. The

known conservation of goal-directed trajectories contrasts

with the unknown outcomes that changes in speed could

have on the statistical patterns of variability of supple-

mental hand trajectories.

In the present work, we investigate possible differences

between the effects that changes in dynamics may exert on

the variability of hand trajectories described by complex

sequential body motions that interleave staged and sup-

plemental movements. To this end, we use segments in

movement trajectories described by the hands during the

performance of beginner’s martial arts routines by a martial

arts expert and 5 novice controls (NC). Within these rou-

tines, there are strike and retracting movements. Strikes are

staged segments corresponding to punches directed toward

an imaginary opponent. Retracting segments are transi-

tional untwisting movements co-occurring, as the system

overtly focuses on staging another punch with the other

Fig. 1 Simplified schematics of the possible interconnected hierarchy

of control modes spanning a continuum from conscious to uncon-

scious processes. A possible corresponding gradient effect of changes

in dynamics on the motor variability across these levels is also

proposed
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hand. First, we establish that across subjects and for each

participant (independent of expertise level) given a ran-

domly selected trial it is possible to blindly group move-

ments into two distinct classes and to predict with high

accuracy what segment type and technique the trial most

likely came from. To further establish specific separable

aspects of each class according to the functionality of a

movement within a technique, we then evaluate in each

participant the statistical patterns of variability of several

hand trajectory parameters.

Method

Participants

Performance of a second-degree black-belt martial arts

expert (22 years old) was measured on all behavioral tasks

in order to serve as a reference for 5 novice participants

(ages 19–23 years old). All 6 were undergraduates at

Rutgers University. The Rutgers University Institutional

Review Board in compliance with the Declaration of

Helsinki approved the protocol for the movement studies.

Consent for videotaping was obtained from the

participants.

Apparatus and behavioral task

The martial arts expert performed simple routines that

combined staged movements intended toward an imaginary

opponent with transitional incidental segments, as the

participant shifted the staged component of the technique

from one limb to another. In one experimental block,

individual segments of the routine were performed in iso-

lation in the order: Jab, Cross, Hook, and Uppercut. In

another block, the four techniques were sequentially

combined in the same order into one fluid movement

without visible stops (J–C–H–U). In different blocks, iso-

lated and sequential movements were performed at differ-

ent instructed speeds and under different forms of sensory

guidance.

Movements were monitored in real time and captured at

240 Hz using 16 electro-magnetic sensors (Polhemus,

Liberty, Colchester, VT) and motion-tracking software

(The Motion Monitor, Innovative Sports Training, Inc.,

Chicago, IL) (see ‘‘Appendix’’ for further details). The

output kinematics features of the movement trajectories

from both hands were analyzed. Sensors were mounted on

the forehead (1), trunk (2), both shoulders (2) (acromial

positions), both upper arms (2) (brachial positions), both

forearms (2) (antebrachial positions), both hands (2) (on

the top, manus position, opposite to the palms), both upper

legs (2) (femoral positions), and both lower legs (2) (at the

crural positions on the front of the shanks). The 16th sensor

was used to digitize the body and render the 3D replica of

the subject. This enabled calibration of the rotations and

displacements within the range of motions explored. The

professional software to digitize, render in 3D, and cali-

brate the system is provided by the Motion Monitor Sports

Inn. Figure 7 shows a 3D replica model of the expert

subjects’ body and the axes of the 15 sensors. This real-

time visualization allowed the experimenters to obtain both

real-time feedback during the calibration step as well as

a posteriori visual confirmation of the correctness and

fluidity of the performance after each block of trials.

During performance, participants were not provided with

this feedback. For simplicity, we only present data here for

the right and left hand, although we also measured the

movements of the head, torso, and legs. These data will be

reserved for different reports.

Beginner-level martial arts routines were performed

which contained 4 individual techniques. Each technique

comprised staged and co-occurring incidental segments.

The segments performed in the staged mode were aimed at

the imaginary opponent. The supplemental, ‘‘gluing’’ seg-

ments of the routine were automated transitions supporting

the staged segments.

The overtly attended segments staged toward the

opponent defined the main goals of the technique and were

instructed to be aimed at achieving maximum impact with

minimum effort. The expert explicitly instructed how this

could be attained with practice and corrections. The staged

segments of the techniques were explicitly monitored by

both the naı̈ve performers and the instructor. The supple-

mental segments incidental to each set of goals were

unveiled in each isolated technique and were present in

similar form within a complete, fluid movement sequence.

An important point to keep in mind is that incidental seg-

ments can become staged the moment that a participant is

deliberately made aware of their existence and explicitly

instructed to monitor them. However, without the instruc-

tion to monitor the return segments (our participants and

expert had no such instruction in these blocks), the default

techniques naturally split into these two alternating staged

and supplemental modes of control. These two modes can

be further distinguished in a dynamics-dependent manner

to be made precise later.

Figure 7 describes the four connected segments of the

routine: Jab, Cross, Hook, and Uppercut. Each segment had

a forward component staged toward an imaginary target

(the opponent) and a return component in transition to

another forward intended segment. We named these J1

(goal-directed), J2 (collateral), C1–C2, H1–H2, and U1–

U2. To better explain each segment, the forward and back

trajectories from each technique are shown for 1 trial in

Fig. 2, for each hand, in the order in which they flowed.
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The participants performed each J1–J2, C1–C2, etc., first in

isolation and then in a separate experimental block, they

performed them in a fluid sequence. The ‘‘Appendix’’

details each technique.

Each subject attended 8 sessions (4 to perform the

routines in isolation and 4 to perform the routines in

sequence). Isolated routines included at least 10 trials per

speed condition within each form of sensory guidance

[imitation, mirror-dark–glowing-lights, mirror-lit-room,

simulation, dark and loads (not fully discussed here)]. A

minimum of 120 (10 9 2 speeds 9 6 sensory conditions)

trials per subject were obtained in each session of the

isolated and in each of the sequenced performance. These

experiments are still ongoing with other subject types.

For each subject, we performed a distributional analyses

whereby we fit (using maximum likelihood estimates) the

parameters of the Gamma family (shape and scale) to the

distribution of peak velocities of the leading hand (left

hand opened the Jab in this case). We call this a person-

alized statistical signature of movement variability for the

peak velocity of this technique as each subject moves

differently across repeats. Thus, we represent each subject

as two points in Gamma parameter (phase) space. One

point represents her/his goal-directed Jab signature and the

other point represents her/his supplemental Jab signature of

variability in the hand’s peak velocity across conditions. In

each condition, two movement speeds (normal-to-slow and

fast) were instructed. Each participant returned several

times to the lab for practice and movement recordings.

Behavioral analyses

Determination of the instantaneous speed/acceleration

profiles and maxima

To address the three questions above, movement trajecto-

ries were decomposed into the goal-directed and supple-

mental segments according to expert performance of the

isolated techniques and of the techniques in sequence

(J–C–H–U). Figure 2a, b shows the hand trajectories

decomposed into the staged and supplemental segments of

each technique in the sequence. Figure 2c, d shows

instantaneous speed profiles corresponding to each seg-

ment. To construct these profiles, we measured the norm

(length) of the velocity vector tangential to the curve

described by the movements in each of the 3D hand tra-

jectories of Fig. 2a, b and obtained the instantaneous speed

scalar value. Each sub-segment of each technique had a

Fig. 2 Methods-Movement trajectory decomposition and speed pro-

files. a Left hand trajectories in a sequenced routine with each dot

marking the beginning and the end of a segment. Solid segments (1

Jab1 and 3 Hook1) mark the goal-directed segments (forward strikes)

intended towards a goal located on an imaginary opponent. Arrows
mark the directional flow of the movement. Dashed traces mark the

supplemental transitional segments at normal or fast speed. Arrows

and asterisks mark the differences evoked by the speed in the

trajectories of the supplemental segments of each technique. b Same

as in a for the Cross and Uppercut techniques. c Instantaneous left

hand speed profiles from the fluid sequence labeled in correspondence

with the hand trajectories (dashed curves are the supplemental

segments). d The speed profiles from the right hand
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maximum value which we determined along with the time

at which this value was attained from the technique’s

movement onset. The hand velocity signaled movement at

5% of the maximum velocity value of the segment. Like-

wise, the sensors software directly outputs the acceleration

vectors in 3D as well as their instantaneous norm to ana-

lyze the instantaneous acceleration profiles (not shown).

The software also obtains their maximum scalar values for

each sub-segment of the technique. Across all repetitions

and sensory conditions, we constructed the histograms of

these values to investigate the statistical properties of their

frequency distributions.

Predicting the type of movement from the hand

trajectories

The movement trajectories described by our hands as we

move are rich in movement parameters that can be

informative of our intentions. This is well known in the

literature on gesture and body language. However, spon-

taneous transitional movements that supplement the

staged components of complex movement sequences have

not been explored. Using a simple leave-one-out cross-

validation algorithm (Quian Quiroga et al. 2006), we can

ask—based on the hand trajectory curvature—which

technique (Jab, Cross, Hook, or Uppercut) and segment

type (strike or retracting) a randomly selected trial most

likely came from.

Should any differences existed between striking and

retracting modes of the techniques, and since we know that

the strike movements are aimed at a goal (or a set of goals)

and that the retracting transitional movements are not

instructed or aimed at a specific goal, we could map the

strikes to goal-directed mode of control and the retracting

motions to spontaneous supplemental mode of control.

These would roughly correspond in Fig. 1 to intentional

versus automatic modes with potentially different gradients

in their statistical patterns of variability as the speed

changes.

Using a simple linear classifier, we ask whether the

supplemental movements are separable from the staged

movements for each one of the 4 techniques under study.

To this end, we use the hand trajectories’ maximum

bending. Recall that the trajectory curvature can be related

to the bending of the curve that the hand describes in

relation to the Euclidean straight line. This scalar quantity

can be easily obtained at each point along the hand path, in

this case for each technique and movement segment, by

projecting each point along the corresponding hand tra-

jectory segment onto the Euclidean straight line and

selecting the maximal normal distance.

For each technique type (a total of 4 techniques), 55

trials were used for a total of 220 trials per movement

type (a total of 2 movement types). Trials were repre-

sented as points in an m-dimensional space, each coor-

dinate corresponding to the parameter of choice

[maximum bending (meters)] input to the decoding

algorithm for each of the m subjects (m = 6, one expert

and 5 novices).

One at a time, data from each trial picked at random

were used to predict the trajectory parameter from a

technique and movement type (chance P B 1/8, 4 tech-

niques and 2 movement types), based on the parameter

distributions derived from all the remaining trials (leave-

one-out cross-validation), and were assigned to the class

of its nearest neighbor in the m-dimensional space using

Euclidean distance (Duda et al. 2001). For assessing sta-

tistical significance of the decoding results, a value of 1

was assigned to correctly predicted trials and a value of 0

to the incorrectly predicted ones. The mean of the

sequences of correctly and incorrectly classified trials was

compared statistically using a non-parametric Wilcoxon

rank test (Zar 1996) and represented graphically as con-

fusion matrices. Upon analyses including all 6 partici-

pants at once, we then examined each individual

separately (m = 1) to determine the worst and the best

performance.

Statistical analyses of hand trajectories in three

dimensions

The Wilk’s lambda statistic has the likelihood ratio test

K ¼ det Eð Þ
det EþHð Þ written in terms of the ‘within’ sum of squares

and products matrix E and the ‘total’ sum of squares and

products matrix (E ? H). The matrix E ¼
P

ij yijy
t
ij �

Pk
i

1
n yi:y

t
i:; where yij is a sample point and yi: ¼

Pn
j yij is

the total sum of the ith sample. The matrix H ¼
Pk 1

n yi:y
t
i: � 1

kn y::y
t
::; where y:: ¼

Pk
i

Pn

j

yij is the overall

total. This test is similar to the univariate F test. It is a

multivariate generalization of the univariate F-distribution

[and generalizes the Hotelling’s T-square distribution as

the F-distribution generalized the Student’s t-distribution

(Mardia et al. 1979)].

We use it in each three-dimensional vector along the

hand trajectory. The use of determinants reduces the test

statistic K to a scalar, making it possible to decide whether

the separation of mean vectors is significant. When

K�Ka;d;mH;mE (K small), the null hypothesis is rejected. In

Ka;p;mH;mE; a is the level of confidence, d is the number of

variables or dimension, mH ¼ k� 1 and mE ¼ k n� 1ð Þ are

the degrees of freedom for hypothesis and error, respec-

tively, k is the number of conditions and n the number of

trials.
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The Wilk’s lambda rule rejects the null hypothesis of

mean equality for K�K�a;d;mH;mE; where a = 0.05, d = 3,

and vH ¼ 2� 1; vE ¼ 2 10� 1ð Þ; are the degrees of freedom

for hypothesis and error terms, respectively, for the hand

paths. In our case, the number of samples k = 2, (slow vs.

fast within each control type, goal-directed vs. supplemen-

tal). Each block has 10 trials. Thus, the number of points per

sample-condition is n = 10. K�a¼0:05;d¼3;vH¼1;vE¼18 ¼ 0:803

(taken from Rencher 1995, Appendix B p. 427). Values of K
that cannot reject the null hypothesis as such that

K [ K�a;d;mH;mE.

Distributional analysis

The statistical properties of the peak velocity from the hand

movement trajectories performing the Jab were obtained

and the best distribution family was fitted using maximum

likelihood estimation (m.l.e.). The histograms and estima-

tion of bin size used Matlab routines based on well-

established algorithms for optimal bin estimation with

W ¼ 3:49rN�1=3(Scott 1979; Izenman 1991), where W is

the width of the bin, r the SD of the distribution (we used

estimated SD s), and N is the number of samples. For each

subject, these analyses included between 300 and 400 trials

across speed types and sensory conditions for the isolated

Jab technique and for the Jab technique embedded in the

sequence. In some cases, a small percentage of trials were

excluded due to performance error or failure of the system

to record. These were less than 5% across the entire data

set.

Based on previous results from our work involving

human patients (autism and Parkinson’s, Jose et al. SNF

2011), (Isenhower et al. 2011a, b; Torres et al. 2010), we

used the Gamma probability distribution family to ask

whether it adequately captured the broad range of vari-

ability patterns in the hand’s peak velocity across sub-

jects. The motivation came from our findings that the

distributions of this hand trajectory parameter were

skewed across a wide range of motor tasks, but the log of

the parameter distributes normally with a range of vari-

ability across patients and typical controls that span from

the exponential to the normal ranges of the log-normal

distributions. Various analyses in our previous work

assessing different statistical families have revealed best

fitting of the Gamma distribution, so we use it here as

well.

The Gamma distribution is a two-parameter family of

continuous probability distributions. Its probability density

function is given by the expression:

y ¼ f xja; bð Þ ¼ 1

baC að Þ x
a�1e�

x
b ð1Þ

with shape (a) and scale (b) parameters. If a is a positive

real number C að Þ ¼
R1

0
ta�1e�tdt.

By varying the shape and scale parameters, one can go

from a Gaussian-like distribution, which we have found in

typical-intact systems to the exponential distribution (when

a = 1) which we have found in the compromised systems.

Importantly, the distributions and different parameter val-

ues are differentiated solely by the statistical properties of

empirical data (i.e., the velocity maximum in this case).

The specific nature of a given statistical distribution

allows probabilistic knowledge of what value the random

variable (the maximum velocity in our case) will be in the

next trial with different levels of certainty—with the

exponential (the most random of the distributions) and

the Gaussian distribution (needing only two moments to

characterize the parameter’s behavior) at the extremes. It is

in this probabilistic context of certainty and predictability

that we have framed our data to objectively assess the

individuals’ variability within the Gamma parameter

(phase) space for the two movement types. Gamma

parameters are thus expected to differ between the two

types of movements for each participant. Furthermore, the

expert’s distance between the points corresponding to the 2

movement types in the Gamma phase space is expected to

differ more than that of the novices—who are still learning

these techniques.

Results

Randomly chosen trials can predict which technique

and movement type the trial came from, based

on the hand trajectory’s maximum bending

The leave-one-out cross-validation procedure revealed that

it was possible to accurately predict for a randomly chosen

trial not only which technique the trial came from but also,

without confusion, whether a given technique segment was

from the strike portion or from the retracting portion. Using

the maximum bending of the trajectory, the predictive

value of the trials was high (0.83 for the strike and 0.99 for

the transitional retracting ones).

Figure 3 shows the results in the form of confusion

matrices for the group of subjects (A) and for the worst

individual performance (B). Rows are actual values from

the data sets. Columns are assigned values from the leave-

one-out cross-validation algorithm using nearest-neighbor

criterion. The 4 upper diagonal values represent the pre-

dictability level of each technique within the strike mode.

The 4 lower diagonal values represent the same for the

transitional retracting segments of each technique. Off-

diagonal values within each mode (4-technique quadrant)
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indicate if there is confusion of one technique with another.

Off-diagonal values in the 2-mode quadrants indicate if

there is confusion of the type of mode.

Two main results stand out: (1) The retracting move-

ments do a better job at distinguishing the techniques both

for the group performance and for the individuals’ per-

formance (this is also reflected in Table 1); (2) The strikes

of each technique (goal-directed segments) are never con-

fused with the spontaneous retracting segments. Even for

the worst individual’s decoding performance, the distinc-

tion remains (this is shown in Fig. 3a-group performance

and 3b-worst individual performance).

Notice that Fig. 3a shows the results from a population

analysis including all 6 participants, so it makes a state-

ment about the overall variability in this group of people

regarding these techniques and movement types, for the

hand trajectories’ maximum bending. The same analysis

for each individual yielded a result that depended on the

level of training. The expert had the highest predictive

accuracy of technique-plus-movement type but one subject

yielded 0.55 in the strike segments, 0.75 in the spontane-

ously retracting segments, and 0.65 mean diagonal. These

values were still well above chance (P B 1/8) yet much

worse than the expert’s (overall diagonal 0.85) and than

other subjects who seemed to have learned at a faster rate.

These disparate levels of decoding performance were

expected. The surprise was how well the decoding algo-

rithm captured the differences in movement types with no

confusion between groups of movements even in the worst

case (Fig. 3b). Even though the individual techniques

within each movement type could be confused in most

novices, the two movement types across all techniques

were not confused. This clearly established two movement

classes which corresponded to the strike and retracting

portions of the techniques.

The learning/expertise stages of each individual and of

the group were in congruence with the other analyses that

we describe next. Table 1 summarizes the results for each

individual and for the entire group (last row in the table).

The group’s variability in the hand trajectories’ maximum

bending could accurately discern between movement types

and technique, albeit with higher accuracy in the technique

for the spontaneous transitional segments. In this sense, the

spontaneous transitions were far more informative, a point

that we expand later with other metrics.

Different effects of the changes in speed

on goal-directed versus supplemental segments

manifested in expert and novices alike

Given the results from the classifier—which unambigu-

ously separated two groups of movements with different

functionality—and that this separation corresponded to the

goal-directed strike and the supplemental retracting seg-

ments of each technique, we asked whether the instructed

speed had differential effects on these two movement

classes.

Across participants—despite levels of expertise—the

trajectories from the supplemental (retracting) segments

incidental to each technique divided into different families

of trajectories according to the instructed speed. The tra-

jectories from the supplemental segments changed their

curvature with the speed. By marked contrast, the goal-

directed trajectories maintained their geometric features

despite different speeds. This result was congruent with the

decoder, which for each individual and also as a group

Fig. 3 Randomly chosen trial accurately predicts the technique and

the movement type from the hand trajectory’s bending. a Group

prediction from 6 participants (5 novices and the expert) is accurate

for both the technique and movement type. Notice that spontaneous

supplemental movements in each technique are better predicted than

goal-directed ones. b Worst individual performance (well above

chance, 1/8 from 4 techniques and 2 movement types) still does not

confuse the two movement types at all. Rows are actual values while

columns are assigned values from the leave-one-out cross-validation
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showed better predictive value for the spontaneous transi-

tions interleaving the goal-directed strikes.

Figure 4 shows the speed profiles (a-left hand, b-right

hand) and the corresponding 3D trajectories (c-left; d-right

hand) from the expert performance of the full fluid

sequence across 20 trials. Notice in C and D examples of

the supplemental spontaneous trajectories from the Hook

(H2) and from the Uppercut (U2) as the system transitioned

to other staged technique with the opposite hand. These

trajectories dramatically changed with the speed and

grouped into different families of curves even though they

were preceded by the goal-directed curves, the strike seg-

ments of each technique that had preserved their geometric

features (bending and orientation) despite speed changes.

Figure 5 shows the performance of a typical novice.

Notice that as in the expert, the effects of speed were

different in the staged segments (the trajectories are more

conserved) than in the supplemental segments of the

technique (the trajectories changed), albeit with more

variability than the expert’s motions. In each technique for

the novice in Fig. 5a–d, the trajectories from the goal-

directed segments remained similar despite changes in

speed K [ K�ð Þ for each point along the path, but the

corresponding supplemental trajectories split according to

speed type K� K�ð Þ (Rencher 1995)—Wilks K test,

a = 0.05). This was the case particularly for the highly

curved movements (Hook and Uppercut). As in the expert

performance, the novices’ performance conserved the goal-

directed curves but the supplemental trajectories changed

according to speed type. These effects were congruent

across subjects and consistent in other parameters of the

hand trajectories—as described later.

The decoder’s blind distinction between strike and

retracting motions of each technique had a correspondence

with the effects of instructed speed on the hand trajectories

of each movement type. The supplemental motions of each

technique had systematically higher predictive value across

subjects and for the group—since different families of

trajectories for each technique emerged with changes in

speed. Their patterns of variability not only changed sig-

nificantly, they actually split into different families of

trajectories.

In the strike segments specifically aimed at a set of

goals, the decoder’s prediction showed more confusion for

each subjects and for the group than the supplemental

segments. In the goal-directed trajectories, there was more

conservation and less variability. In this sense, their

bending patterns across speeds were less informative. Next,

we examine the temporal coverings of these curves and

assess the statistical patterns of variability of the maximum

hand velocity along each technique’s segment.

Skewed distributions of the peak velocity values

from the hand trajectories

The distributions of the maximal speed values across rep-

etitions and techniques were skewed across subjects with

different degrees of skew well fitted by the continuous

2-parameter Gamma family (Fig. 6). In both goal-directed

and supplemental cases, taking the logarithm of the peak

velocity turned the distributions normal (Fig. 6a, b insets

for expert and representative novice). Across novices, the

hand speed ranged between 0.97 and 7.91 m s-1 in the

goal-directed segments and between 0.60 and 4.96 m s-1

in the supplemental segments incidental to the main tech-

niques. The expert motions were significantly faster (up to

9 m s-1). They also differed between staged and supple-

mental movements in the Gamma parameter (phase) space.

This is shown across all subjects in Fig. 6c with the power

fit, goodness of fit values reported in the figure caption

(absolute value of the exponent for goal-directed 0.93 was

below 1, but above 1 (1.64) for supplemental motions and

maximal separation between the 2 m.l.e. sets of parameters

for the expert). The goodness of fit was best in the sup-

plemental movements as well. These results were congru-

ent with the decoder’s and with the different patterns of

trajectory variability for the two movement types of each

technique.

Discussion and conclusions

This work investigated patterns of movement variability

during the performance of complex beginner’s martial arts

routines. First, we showed that across repeats of these

complex sequences and for this group of participants, one

could randomly choose a trial and predict with high

accuracy the type of technique and segment functionality

that the randomly chosen trial most likely came from.

Based on the maximum bending of the hand trajectory, a

simple linear classifier did not confuse which strike and

technique a blindly chosen trial came from. These

Table 1 Individual and ensemble decoding results using leave-one-

out cross-validation with nearest-neighbor criterion

Movement functionality Diagonal

Goal-dir Supplem

Expert 0.75 0.85 0.93

Novice 1 0.73 0.78 0.83

Novice 2 0.70 0.80 0.89

Novice 3 0.61 0.59 0.66

Novice 4 0.55 0.65 0.75

Novice 5 0.69 0.69 0.70

Ensemble 0.83 0.91 0.99
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separable movements also had different purposes. The

strike segments corresponded to staged segments per-

formed toward a goal (e.g., hit the face area of an imagi-

nary opponent). The transitional retracting movements

supplemented the main goals. We then posed a main

hypothesis in this work: speed changes will have a different

effect on the movement trajectories of the goal-directed

segments than on those from the supplemental segments,

incidental to each staged technique, with marked differ-

ences in their statistical patterns of variability.

We found evidence in support of the hypothesis. There

are two fundamentally different classes of movements to be

simultaneously controlled, serving different functions. The

instructed changes in speed affected their trajectories dif-

ferently. These effects were quantified in the maximum

bending and in the maximum speed of the trajectories from

both movement types. The class of movement explicitly

sub-serving a set of goals (goal-directed) tended to con-

serve the physical curves of the trajectories and had dif-

ferent latencies and different temporal profiles. The

supplemental class of movements manifested different

trajectories—each corresponding to a speed level (i.e., to a

given latency and temporal profile family).

These findings held independent of the level of training

or skill of the participant. The different instructed speeds in

the expert and novices alike had a fundamentally different

effect on the movement segments that were staged and

deliberately aimed toward a goal than the effects they had

on the supplemental transitions of each technique. Specif-

ically, when moving the hand between the same two

locations in space, the system made different uses of the

sensory input provided by the movement (i.e., from the

kinesthetic sense of body position and body movement)

when the motion was goal-directed than when it was sup-

plemental. When instructed to move faster, the system

scaled the tempo of the movement along a statistically

similar physical path if the motion was staged to punch the

opponent. When retracting the hand as the other hand

simultaneously deployed the next punch, the retracting path

to the same initial spatial location spanned a significantly

different physical trajectory for different instructed speeds.

Each speed level spanned curves with a distinct geometry:

Fig. 4 Different effects of speed changes on the supplemental and

staged movement trajectories: Expert performance of a fluid sequen-

tial full set of techniques. a, b The instantaneous speed profiles from

all 10 trials performed at the slow instructed speed from the left hand

alternating between staged and supplemental segments of each

technique. The technique segment is indicated for each hand speed.

Arrows indicate the alternating order and mark the simultaneous

performance of an intended (staged) and a supplemental segment.

c All trajectories from the staged segments of the left hand at the fast

and the slow speeds grouped to show their similarity in space.

Contrast the left hand trajectories from the supplemental segment of

the Hook back which changed their spatial properties and the region

in space as a function of speed. Faster movements were more curved

on the way to the body and also changed the curve space orientation.

d Staged trajectories for the staged segments in the Cross and Hook

techniques performed by the right hand also maintained the spatial

properties despite instructed speed. The return supplemental trajec-

tories from the Uppercut changed in space with the speed. Notice that

fast U2 occupies a different region of space (different curvatures,

orientations and lengths) than slow U2 despite the fact that the

preceding U1 segments were statistically invariant to speed changes.

Arrows indicate the flow of the motion
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different path length, different curvature, different orien-

tation, etc. Likewise, there was a gradient of variability in

the speed parameters that differed between the two blindly

separated groups of movements. Specifically, the values of

the maximum speed along the hand trajectories manifested

two distinct signatures of variability according to the

Gamma-distribution family’s m.l.e. These signatures were

different for each subject and had different values for the

strike than for the retracting segments. The two movement

types were at a larger distance in the Gamma-distribution

parameter space in the expert’s case compared to novices.

This suggests that the more the system practices, the farther

apart the statistical signatures of variability from these two

movement types may become. We are currently testing this

hypothesis in other experts.

We also found skewed distributions of the peak velocity

not previously reported in complex sequences (although we

had reported them in rhesus monkeys performing the center-

out reaching planar task Torres et al. SFN 2010, San Diego,

CA). These new findings in complex sequential motions

Fig. 5 Different effects of speed changes on the striking (goal-

directed) and retracting (supplemental) movement trajectories

remained in novice during the learning of these routines for the first

time. a–d Intended movements from the staged segments of the

technique were not significantly different with speed changes (see

text). Arrows indicate the flow of the movement. However, supple-

mental segments changed the trajectories with changes in speed.

e–h Speed profiles from each technique segment and speed type
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performed by humans paired with the finding that the log of

the parameter distributes normally may be of interest to the

computational community. There are fundamental statistical

differences between symmetric and skewed distributions in

terms of additive versus multiplicative effects (Limpert et al.

2001). Both the log-normal and the Gamma family provided

good fits to the kinematics data. These results invite inves-

tigation of the statistical patterns of variability from other

movement variables and their potential roles as possible

task-dependent control parameters in stochastic models of

optimization with constraints.

The present results have potential therapeutic value in

clinical research. As in our recent reports from patient data

involving sequential visually guided reaches (Torres et al.

2010, 2011), here in more complex sequential movements,

we were also able to use this dichotomy between task-

relevant and task-incidental aspects of the movements to

identify in the patterns of movement variability the most

adequate movement-based feedback to guide a system.

This turned out to be from the supplemental movements.

Using the present objective metrics, we will be able to

track learning gains in patients.

Fig. 6 Gamma fitting to skewed distributions of the individual’s hand

peak velocity across sessions. a Expert performance (439–480 trials

across sessions). Skewed distribution of peak velocities for both Jab

segments, staged and supplemental fitted by the Gamma family (see

text for bib size determination). Insets are the distributions of the log

of the peak velocity which distributes normally. Mean and variance

for staged are 3.61 and 1.20 m s-1, respectively. Gamma maximum

likelihood best fitting parameters are 10.85 (shape) and 0.33 (scale)

with 95% confidence intervals [9.28 12.69] and [0.28 0.39],

respectively. Supplemental movements had mean and variance 4.12

and 2.15 m s-1, respectively. Gamma maximum likelihood best

fitting parameters are 7.89 (shape) and 0.52 (scale) with 95%

confidence intervals [6.77 9.19] and [0.44 0.61], respectively.

b Novice performance (329–386 trials across sessions). Same format

as expert data. Mean and variance for staged movements are 1.87 and

0.31 m s-1, respectively. Gamma maximum likelihood best fitting

parameters are 11.13 (shape) and 0.16 (scale) with 95% confidence

intervals [9.56 12.95] and [0.14 0.19], respectively. Supplemental

movements had mean and variance 2.23 and 0.54 m s-1, respectively.

Gamma maximum likelihood best fitting parameters are 9.23 (shape)

and 0.24 (scale) with 95% confidence intervals [7.94 10.73] and [0.20

0.28], respectively. c Gamma family fit across all 5 novices and 1

expert plotted in parameter space (squares are from goal-directed

trials, stars are from supplemental trials). Circles enclose the expert in

a and triangles the novice in b. Notice that each movement type has a

different statistical signature for each subject. The power fit model

f(x) = axb (6 subjects) for the goal-directed yielded (a = 2.15, b =

-0.93, R-square 0.67, rmse 0.06). In the spontaneous case the rate of

decay was faster-larger absolute value of the exponent (a = 13.57,

b = -1.64, R-square 0.89, rmse 0.01). Expert points for goal-directed

and supplemental movements were farther apart in Gamma phase

space
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The ability to track learning gains in patients to iden-

tify the most effective form of sensory-motor feedback for

a given individual could facilitate the identification of

relevant movement parameters to tailor personalized

therapies that exploit the best learning predispositions and

the best sensory capabilities of each given individual. In

this sense, the present methodology may be useful in

spectral developmental disorders—such as Autism—and

in spectral neurodegenerative disorders as well—such as

Parkinson’s disease. Both disorders—whether present at

the beginning or at the end of the human lifespan—pro-

duce a constellation of sensory-motor deficits with vari-

able degrees of severity from individual to individual.

Thus (all things being equal in a task), the personalized

signature of motor variability (e.g., our Gamma parame-

terization of variability providing a continuum of signa-

tures across subjects) can be informative of where the

individual falls in relation to typical controls along a

continuum gradient of variability for each movement

type. In turn, this can inform us which form of sensory-

motor feedback could potentially be more suitable for a

given patient within a given spectrum [Jose et al. 2011,

Torres et al. (2010, 2011)]. Additionally, since supple-

mental movements are a by-product of or support goal-

directed behaviors, they require no explicit instructions.

This is to our advantage since the majority of the patient

populations from whom we assess naturalistic movements

may have difficulties following precise instructions. Thus,

we could target these spontaneous supplemental motions

to track performance gains.

The conservation versus non-conservation of the

movement trajectories with speed changes could have

implications for theoretical work in movement control.

Two qualitatively different solutions emerged to move

between the same two regions of space: one which gave

rise to a unique curve with multiple temporal profiles and

latencies (goal-directed case) and another (supplemental

case) which gave rise to different families of curves, each

one of which had a unique temporal profile and latency.

This new result extends the empirical results from our

previous work on the reaching family (Torres 2010) to

more complex choreographic routines that simultaneously

engaged all limbs, trunk, and the head. There is to my

knowledge no single computational principle that could

explain and account at once for these two qualitatively

different solutions to the problem of moving the hand

between the same two spatial locations. These new

empirical results pose a new theoretical question: given

two points in space, how do we connect them by moving

deliberately and how do we do so by moving spontane-

ously using a unique physical principle? Based on our data,

we conjecture that two distinct sets of principles must

govern these motions’ dynamics, and therefore, we can

consider goal-directed and supplemental movements as

two distinct classes of motor behavior, possibly primarily

controlled by different parts of the nervous system. Further

research will be required to address this conjecture.

One possible interpretation of these results is that during

the staged segments of the techniques the ‘‘mind’’ domi-

nates over the physics of the body to keep the body on a

deliberately staged spatiotemporal course of the action as

brain structures involved in the voluntary control of

movements primarily guide the action. By contrast, in the

supplemental movements, the ‘‘physics’’ runs the show as

different systems involved in automated control may pri-

marily guide the action without much conscious awareness.

Smoothly transitioning between these two modes would

allow flexibility in recruiting, releasing, balancing, and

coordinating the degrees of freedom in our body while

complying with concomitant environmental constraints

(Torres and Zipser 2002). In this sense, the dichotomy

unveiled here provides a unifying framework to study the

physical movements of a biological entity in its natural

environment. As others have previously pointed out in the

context of rhythmic behaviors (Kugler and Turvey 1987), it

is important to look at movement in a broad sense, inspired

by the works of Nikolai Bernstein (Bernstein 1967) and

motivated by the ideas of James Gibson (Gibson 1966).

The present framework seeks to study natural movements

in that broad context and take full advantage of the body of

knowledge created by both the motor control community

[e.g., (Shadmehr and Wise 2005; Lacquaniti et al. 1982;

Terzuolo et al. 1982; Soechting and Terzuolo 1988; Flan-

ders 2011)] and by the field of ecological psychology that

highlights the complementary nature of sensory-motor

processes [e.g., (Kelso 1995; Kelso and Engstrøm 2006)].
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Appendix

The first isolated technique is called a Jab. The Jab starts

with the front hand extending toward the imaginary

opponent’s nose (J1), keeping the hand in a tight fist,

making sure that the elbow does not hyperextend; the hand

should be retracted while it is still slightly bent (Fig. 2a).

At the same time that the Jab is being retracted (J2), the
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Cross is being extended forward (C1). Again the imaginary

target is used and the Cross is directed toward the nose.

Simultaneously, the body is twisting, beginning with the

back foot, then the torso and ending with the back of the

hand extending forward. Because the body is already

twisted, this motion naturally sets up the staged portion of

the Hook (H1) aimed at the opponent. As the Cross (right

hand) reverts back to its original position (C2), the left

forearm is made into a C-shape with the hand in a fist and

the palm facing down, and the body untwists itself, using

the momentum of the body rather than the force of the hand

to achieve the intended goal (to reach the opponent’s face).

As the body untwists itself in a supplemental H2, the knees

bend slightly in preparation for the intended Uppercut

(U1). After the knees are bent and the left hand is returning

to its original positioning to protect the face, the right hand

fist shoots up in a motion that resembles throwing a

bowling ball, but the hand is kept tighter aligned to the

body and the palm facing the body. The supplemental

portion U2 brings the hand back, and the body adopts the

defense position again (Fig. 7 bottom panel-end of the

cycle). It is important to note that all routines where done

in the presence of an expert instructor in order to minimize

risk of injury. For further information and descriptions

see our website for a detailed video tutorial on these

techniques.

Three dimensional digital rendering frames from the

expert’s performance of one trial of J–C–H–U beginner’s

white belt technique using the real-time sensor outputs.

Arrows mark the locations of 15 electromagnetic sensors

recording at 240 Hz. The motion capture system provides

the choice of outputting the raw accelerations and veloci-

ties (linear and angular) or various filtering and smoothing

options. The system deals directly with potential spurious

or noisy data due to estimation of higher order derivatives

of position. Because of its reliability, this software-system

is routinely used as a standard interface in sports training of

the kind studied here. The update rate of 240 Hz per sensor

and the latency of 3.5 ms permit real-time monitoring of

the body motions. Each sensor has 6� of freedom (DOF)

with static positional accuracy of 0.03in, static orienta-

tion accuracy of 0.15 deg RMS, a positional resolution

of 4 9 10-5 cm at 30 cm range and a resolution of

1.2 9 10-3 deg of orientation. The range from the standard

Fig. 7 Methods–Martial arts

routine—Jab–Cross–Hook–

Uppercut
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source is up to 1.52 m and the extended range is up to

4.6 m. Our experiments took place well within the standard

source range. Several standard filtering algorithms are used

by the professional software that comes with the Motion

Monitor Sports Inn. We used a Butterworth filter (Butter-

worth 1930) with a cut-off frequency of 6 Hz. Further

details about the electromagnetic system that our Motion

Monitor uses can be obtained at the Polhemus company

website.

Green traces in the rendered figure mark the hand

motions. Forward segments were away from the body and

staged against an imaginary opponent. They coexisted with

the supplemental transitions of the other limb simulta-

neously moving away from the opponent. (A) Jab1 in the

forward direction, away from the body. (B-D) Jab 2 back

toward the body simultaneously with Cross 1 forward.

(E–F) Cross 2 back simultaneously with Hook 1 forward.

(G-J) Hook 2 back simultaneously with U1, ending the

routine with both hands back to protect the face. Bottom

panel focuses on the expert’s hands (Google my lab’s

website for more details and videos).
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