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a b s t r a c t

Point-to-point fast hand movements, often referred to as ballistic movements, are a class of movements
characterized by straight paths and bell-shaped velocity profiles. In this paper we propose a bang–bang
optimal control policy that can achieve such movements. This optimal control policy is accomplished
by minimizing the L∞ norm of the jerk profile of ballistic movements with known initial position, final
position, and duration of movement. We compare the results of this control policy with human motion
data recorded with a manipulandum. We propose that such bang–bang control policies are inherently
simple for the central nervous system to implement and also minimize wear and tear on the bio-
mechanical system. Physiological experiments support the possibility that some parts of the central
nervous system use bang–bang control policies. Furthermore, while many computational neural models
of movement control have used a bang–bang control policy without justification, our study shows that
the use of such policies is not only convenient, but optimal.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The process of evolution drives species to differentiate to
produce some competitive advantage. Just as it is easy to observe
that evolution has lead to a great many modes of locomotion
(Grillner & Jessell, 2009), it can be assumed that evolution has
had effects on the control of behavior by the nervous system.
Under this assumption, we can then ask which attributes of the
nervous system’s control policy might have adapted to provide
a competitive advantage. It is reasonable to assume that a bio-
mechanical system evolves to find an optimal control policy by
optimizing over some cost or reward function. In this paper, we
suggest a new cost function and discuss the control policy this cost
function dictates.

How the CNS implements a control policy to achieve move-
ments is not understood. Areas of cortex send axons to the spinal
cord and generate movements when stimulated, which has led
many to believe that cortical structures are responsible for most
aspects of movement control (Georgopoulos, Schwartz, & Kettner,
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1986; Lemon, 1988; Penfield &Boldrey, 1937). Determining the ex-
act parameters by which the cortex is able to alter behavior has
proved to be difficult. Many experiments have correlated cortical
activity with various aspects of a behavior (Georgopoulos et al.,
1986; Hammon, Makeig, Poizner, Todorov, & de Sa, 2008; Lemon,
1988; Penfield & Boldrey, 1937). For example, Graziano’s work
(Graziano, Taylor, &Moore, 2002) implies that the cortical descrip-
tion of a behavior may be limited to a high level goal state repre-
sentation. Other evidence shows that the spinal cord plays a key
role in the generation of behaviors (Giszter, Mussa-Ivaldi, & Bizzi,
1993; Pearson, 1976).

One method used to understand the nature of movements is
to reduce them to simpler components. For this study we limit
ourselves to examining simple, ballistic point-to-point reaching
movements. Simple movements might be considered to make up
a basis set of which more complicated movements are composed
(Giszter, 1992; Hart & Giszter, 2010; Mussa-Ivaldi, Giszter, & Bizzi,
1994). By studying these simple movements, we may be able
to gain insight into the control of more complex movements
such as curved movements defined by via points (Flash & Hogan,
1985) or paths (Todorov & Jordan, 1998). Furthermore, it has been
observed that this class of movements consistently follows bell-
shaped velocity profiles (Abend, Bizzi, & Morasso, 1982; Flash &
Hogan, 1985). This observation suggests that there exists a set of
constraints placed on the dynamic system by a controller. Because
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this set of constraints exists across a range of movements, it can
be said that these movements result from a common control
policy. We show here that the observable invariant parameters of
movement suggest a neural control policy which is corroborated
by neurophysiological experiments.

There have been several attempts to mathematically model
human point-to-point movements of an end effector (the hand)
(Flash & Hogan, 1985; Todorov & Jordan, 1998; Viviani & Flash,
1995). A key study of this type is (Flash & Hogan, 1985). Flash
and Hogan began their work on modeling movement by observing
that short duration, straight line reaching movements (ballistic
movements) exhibit a stereotypical bell-shaped velocity profile.
Their work resulted in a model that was exceptionally good
at reproducing the trajectory of a movement given the limited
information of initial position, final position, and movement
duration. This model was achieved by finding the trajectory that
minimized the L2 norm of the 3rd derivative of the position
trajectory. The 3rd derivative of position is known primarily as
‘‘jerk’’, but is also known as ‘‘shock’’, ‘‘jolt’’, ‘‘surge’’ or ‘‘lurch’’. We
henceforth refer to their model minimizing the L2 norm of jerk
asMJ2.

Although the MJ2 is exceptionally good at reproducing trajec-
tories from limited constraints, it remains unclear how the central
nervous system would generate these trajectories. Various other
models have been proposed that minimize other derivatives of po-
sition such as acceleration (Ben-Itzhak&Karniel, 2008). This recent
work by Ben-Itzhak andKarniel has produced amodel that not only
generates accurate point-to-point movements but also suggests a
control policy by which the CNS could be generating such move-
ments. The work presented here expands upon those findings and
suggests an alternativemodel that presents a simple control policy
the CNS may implement.

We propose an optimal control policy for achieving ballistic
movements based on minimizing the jerk of the trajectory of the
end effector. We formulate the problem as an optimal control
problem wherein the jerk is treated as the control signal. Our
model minimizes the L∞ norm of the jerk and shows that the
optimal control policy is of a ‘‘bang–bang’’ type controller, a policy
which simply switches a system between two states (Kirk, 2004).
The appeal of such controllers is that they are inherently simple to
implement. Furthermore, minimizing the L∞ norm minimizes the
maximum allowable jerk for the system, which can reduce wear
and tear. Henceforth, we refer to our proposed model asMJ∞.

Flash and Hogan also solved for the trajectory that minimizes
jerk; however, their cost function utilizes the L2 norm. While such
a cost function yields bell-shaped velocity profiles and position
profiles as observed in humans, the jerk profiles given by themodel
are not a simple bang–bang type controller. Ben-Itzhak and Karniel
developed amodel (MACC) that also yields accurate trajectories. In
contrast to anMJ2 model, their model implies a simple bang–bang
controller. They arrive at this model by minimizing the L2 norm of
the acceleration with a free parameter constraining the maximum
allowable jerk. While they show that their model improves error
significantly, we argue that their usage of a free parameter is not
needed and adds unnecessary complexity. The model presented
here still yields a bang–bang control policy but is less complex in
that no free parameter is required.

This paper is divided into the following sections. In Section 2,we
describe ourmodel used to describe realistic humanmovements as
well as provide justification for its biological importance. Next, in
Section 3, we explain the process by which the human movement
datawere collected andparsed for proper analysis and comparison.
In Section 4 we discuss the results of the data comparison with
our model, MJ∞, and the MJ2 model. The last section discusses the
importance of this work and draws conclusions about the insights
provided by modeling human movement.
2. Model description

The reasons the central nervous system minimizes the jerk of
movements are not immediately apparent. Mechanical systems
have maximum tolerances related to various dynamic variables
(velocity, acceleration, jerk, etc.). Beyond these tolerance levels,
components of the system may begin to fail. Biological systems
are mechanical systems and therefore also have thresholds that,
when exceeded, may lead to damage such as tearing of ligaments
and muscles or breaking of bones. Jerk is one of the dynamic
variables that bears directly on the well-being of a mechanical
system. Mechanical engineers and roboticists have recognized the
benefits of minimizing jerk and have incorporated this concept
into their systems (Gasparetto & Zanotto, 2008; Kyriakopoulos &
Saridis, 1988; Pattacini, Nori, Natale, Metta, & Sandini, 2010; Piazzi
& Visioli, 2000). Optimizing animal movement by minimizing
jerk is beneficial in that it can reduce stress on the mechanical
components of the body.

It is not obvious what function of the instantaneous jerk should
be minimized to match biological observation. The L2 norm (as
used in the MJ2 model) measures the summation of squared jerk
over the course of themovementwhile the L∞ norm (as used in the
MJ∞ model) minimizes the maximum jerk value over the course
of the movement. While the L2 norm metric penalizes high jerk
values, it does not explicitly force the system to keep themaximum
instantaneous jerk as low as possible. In the jerk profile figure
shown in Fig. 1, notice that near time t = 0 and t = 1 s, the jerk
resulting from the MJ2 model far exceeds the maximum jerk over
the entire movement by theMJ∞ model. In contrast to the L2 norm
metric, limiting themaximum instantaneousmagnitude of jerk via
an L∞ norm cost function reduces the possibility of the movement
passing some critical jerk threshold, after which damage to the
bodymayoccur. This intuitive rationale helps justifywhy evolution
may have minimized the maximum magnitude of instantaneous
jerk (L∞ norm) during amovement rather than the sum of squared
jerk over the course of a movement (L2 norm).

2.1. Minimizing jerk as a control variable

In this section we formulate the problem of minimizing the
jerk of a ballistic point-to-point movement as a control problem
where the control signal is the jerk, the initial and final positions
are known, and the duration of movement is also known. For
ease of notation, here we restrict our problem formulation to
one dimension and note that extensions to higher dimensions
are straight-forward. The control signal that we seek to achieve a
minimum jerk position trajectory x(t) is formulated as follows:

minimize
u(t)

∥u(t)∥p

subject to ẋ(t) = Ax(t) + Bu(t)
(1)

where A =


0 1 0
0 0 1
0 0 0


, B =


0
0
1


, x(t) =


x(t)
ẋ(t)
ẍ(t)


, u(t) =

...
x(t), and

where ∥ · ∥p denotes the Lp norm.
The solution to Eq. (1) will determine the optimal control policy

u(t). The selection of the Lp norm can result in vastly different
control policies. For 1 ≤ p < 2, the control policy will result in
physiologically unrealistic movements and as a result these types
of control policies are not discussed here. Instead wewill pay close
attention to cases where p = 2 and p = ∞. For p = 2, we have the
following policy as described in the following theorem:

Theorem 1. The solution to Eq. (1) with p = 2 is a straight line
trajectory given by the following control policy:

u(t) =
...
x(t) = (xf − xi)


360
T 5

t2 −
360
T 4

t +
60
T 3
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Fig. 1. The profiles corresponding to the L2 norm control policy and L∞ norm control policy are shown in red and blue respectively. These plots are generated according to
Theorems 1 and 2 respectively.
where xi is the initial hand position at time t = 0 and xf is the final
hand position at time t = T .

Proof. This was originally shown by Flash and Hogan (1985). �

The control policy corresponding to the above theorem has
been shown to fit human data very well (Flash & Hogan, 1985). The
next theorem shows that if the L∞ norm of jerk is minimized (i.e,
p = ∞) in Eq. (1) then we have a bang–bang control policy.

Theorem 2 (Bang–Bang Control Theorem). The solution to Eq. (1)
with p = ∞ is a straight line trajectory given by the following control
policy:

u(t) =
...
x(t) =


J 0 ≤ t <

T
4

−J
T
4

≤ t <
3T
4

J
3T
4

≤ t ≤ T

(2)

with J = 32 xf −xi
T3

where xi is the initial hand position at time t = 0
and xf is the final hand position at time t = T .

Proof. This was originally shown by Kyriakopoulos and Saridis
(1988). �

Ben-Itzhak and Karniel (2008) proposed a similar bang–bang
control policy for achieving ballistic point-to-point movements.
Their control policy minimizes acceleration and also places a
threshold on the jerk of the trajectory. This threshold is a free
parameter in their model that controls the amount of allowable
jerk. Here we show that achieving a bang–bang control policy
can be done without introducing any free parameters simply by
minimizing jerk as measured by the infinity norm.

3. Methods

The human arm movement data used in this study for com-
parison with our model were provided by Amir Karniel at the Ben
Gurion University of the Negev, the same data he and Ben-Itzhak
Fig. 2. The boxes labeled A, B and C are targets which appeared on a screen in front
of the subjects. The triangle at the end of the subjects arm represents the subjects
hand and the manipulandum he is moving. The subject moves his hand between
two of the points within a specified time window. The three targets allow for six
distinct movement types indicated by the six arrows. The subject receives visual
feedback indicating if he or she has successfully reached a target and if he or she
has done so within the allotted time window.
Source: Diagram adapted from Ben-Itzhak and Karniel (2008).

used in their 2008 paper outlining their model of fast arm reaching
movements (Ben-Itzhak & Karniel, 2008). The data originated from
a 2002 paper by Karniel and Mussa-Ivaldi (2002) investigating the
nervous system’s ability to adapt to perturbations. An abbreviated
description of the data collection techniques is given below. For a
complete description, see Karniel and Mussa-Ivaldi (2002).

Seated subjects held a robotic manipulandum which was
restricted to two dimensional movements corresponding to the
horizontal plane of the subjects. They watched a screen which
displayed the position of their hand (and the manipulandum)
in relation to three positional markers A, B and C. The markers
were positioned to form an equilateral triangle (see Fig. 2). The
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Fig. 3. A typical recording of the position profile. The oscillatory behavior at the end
of the movement corresponds to the overshoot and correctional effects described
in the text and are discarded since they are not part of the ballistic portion of the
movement. The units of time and position are not relevant and are not shown.

subjects were instructed to move the on-screen representation
of the manipulandum from one target to another. The distance
between the targets was 10 cm. This motion was to occur within
one third of a second, ±50 ms. Feedback was given to the subjects
indicating if they had reached the target and if they did so within
the appropriate time window. Position profiles were recorded for
all six possible movement types for five subjects over the course of
four days. The original data included a subset of trials in which the
armwas perturbed duringmovement from onemarker to another.
This subset was excluded from our analysis. Only unperturbed
movements were analyzed. See Fig. 3 for an example of a typical
movement.

The data included uninteresting aspects such as near stationary
positional information before a subject began moving and after
a subject reached his or her goal and stopped moving. Various
methods have been used for movement onset detection (Botzer &
Karniel, 2009; Staude, 2001; Staude,Wolf, Appel, & Dengler, 1996).
Unfortunately, there is no consensus regarding which technique
is best for choosing the relevant portion of a movement as the
definition of what is relevant may change from study to study or
from one movement type to another. We employ a simple method
to determine the start and end times of each movement. We start
by finding the onset of the movement. To do so, we compute the
energy of a moving window of five time steps over the velocity
profile from a given trial:

E =

5
i=1

v2
[i] (3)

where v[i] is the velocity of the manipulandum at time step i of
the current window. The window starts at the beginning of the
recorded data of a trial (time steps 1–5) and moves forward in one
time step increments (e.g. 2–6, 3–7, etc.). If E is not greater than a
threshold, δ, the window continues moving forward and the test is
repeated.

When the window moves over a portion of the velocity profile
where the manipulandum is both stationary and close to the
starting position (i.e. before the movement begins), E is low. As
the window moves over a portion of the velocity profile which is
increasing, E becomes greater. We define the starting time of the
movement to be the beginning time step of the window at the first
window position where E ≥ δ.

Finding the time at which the ballistic portion of themovement
ends is difficult due to correctivemovementsmade by the subjects
Fig. 4. Histogram of the ratio of average starting and stopping velocities to peak
velocity for each trial. Ideally, the trials should have start and end velocities as close
to rest as possible in order to conform to both models’ assumptions.

after they reach their target, e.g. the correction of perceived
target overshoot. Recall that we are only interested in ballistic
movements. The corrective portions of the movement fall outside
the ballistic portion of the movement. We define the middle (T/2)
and end (T ) times of a movement in the same way as done in
Ben-Itzhak and Karniel (2008). End effector velocity profiles for
ballistic point-to-pointmovements are known tohave a symmetric
bell shape (Abend et al., 1982; Flash & Hogan, 1985). In order
to determine the end time of the movement, we first define
the middle position of the movement (T/2) to be the point of
maximum velocity, i.e. the top of the symmetric bell. We then
simply double this value to find the end time T .

Like other methods, this heuristic technique is not guaranteed
to find the ideal onset and end of the recorded movements. Both
the MJ2 and MJ∞ models assume an initial and final position at
which velocity is zero. For this reason, it is appropriate to filter the
trials, keeping those for which our start/end detection algorithm
has chosen points which most closely meet the zero velocity start
and end point assumptions of the models. By definition these are
the only trials that are relevant to the models.

Since none of the trials have exactly zero velocity start and end
points, some degree of tolerance must be allowed. Furthermore,
some metric must be employed to define the degree of closeness
to zero velocity for a given start/end point. We define close to
zero velocity for start and end points on a trial by trial basis by
computing a ratio between the velocities in question and the peak
velocity:

c =
vs + ve

2vp
(4)

where c is a unitless indicator of closeness to zero, vs is starting
velocity, ve is the ending velocity and vp is the peak velocity of the
movement. Applying this metric to all trials yields a distribution
between 0 and 1 (see Fig. 4). As the c value gets closer to zero,
the corresponding trial increasingly conforms to the zero start and
end assumptions of theMJ2 andMJ∞ models and is therefore more
appropriate for comparison against the models. We included all
trials with a c value less than the harmonic mean of the entire
distribution. That is, we favored trials which most closely conform
to the assumptions of the models while still leaving enough trials
to properly gauge statistical significance. The use of the harmonic
mean as a level of tolerance of deviation from zero velocity is
somewhat arbitrary. What is important is that the trials with
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Fig. 5. Bars A–E show the comparison of the average MSE of position profiles
predicted by MJ2 and MJ∞ vs. human trial data along with standard error bars. ‘‘All
Subjects’’ is an aggregate of the trials in A–E. The MJ∞ model performs better than
the MJ2 model in all cases. The results for A, B, E are significant with p < 0.05
by a Wilcoxon rank-sum test. The ‘‘All Subjects’’ aggregate results are extremely
significant with p < 0.001 by a Wilcoxon rank-sum test. This test was utilized due
to the non-normality of the data as is typically done in this situation (Ben-Itzhak &
Karniel, 2008).

large c values (that do not conform to the models’ assumptions)
are discarded while keeping enough trials to maintain statistical
significance. In all, our filtered data set included 406 movement
trials.

4. Results

To assess the performance of the minimum L2 norm jerk model
(MJ2) in comparison to the minimum L∞ norm jerk model (MJ∞),
we compute the time-series mean-squared error between the
model’s predicted position trajectory with the human subjects
trajectory. Our intention is to show that MJ∞’s much simpler
control policy can fit data at a high accuracy. In fact, we show
that ourmodel significantly exceeds the accuracy of theMJ2 model
for this data set. Formally, the mean-squared error is computed as
follows:

MSEk =
1
tk

tk
i=1

(xk[i] − pk[i])2 (5)
where k refers to the trial, tk the number of samples for the kth
trial, xk is the model position profile for the kth trial, and pk is the
recorded data position data for the kth trial.

Fig. 5 shows the comparison of the average MSE trajectories
between MJ2 and MJ∞. MJ∞ has a smaller MSE in all cases. We
therefore can conclude that the trajectory estimates ofMJ∞ are just
as good or significantly better than those ofMJ2. Furthermore, their
control policies differ significantly and we suspect that the simple
control policy (the bang–bang controller ofMJ∞) would be favored
by a biological system.

The MACC (Minimum Acceleration Criterion with Constraints)
model proposed by Ben-Itzhak and Karniel (2008) also implies a
simple bang–bang controller; however, their approach requires
a free parameter that places a cap on the maximum allowable
jerk (manifested as a constraint on the control signal). Although
changing this parameter can change the switching times of the
bang–bang controller, it is not clear how to select an appropriate
value for this parameter. Ben-Itzhak and Karniel choose the value
for this parameter by performing a grid search and selecting the
best value that fit the data for each trial. Even though they showed
that using this method of selecting the parameter value results in
trajectories that haveMSE significantly smaller than theMJ2, these
results depend upon the model’s ability to tune this parameter
on a trial by trial basis. This may explain the improvement over
other models they have used for comparison. While it is feasible
for the CNS to implement additional parameters, free parameters
add unnecessary complexity for achieving bang–bang control. It
is worth noting that while our model does not require any free
parameters, it is a special, but important, case of the MACC model
where the free parameter is chosen such that the infinity-norm of
the jerk profile is minimized and hence is equivalent to the MJ∞
jerk profile.

Our suggestion of a bang–bang control policy is based upon the
fact that minimizing jerk with an L∞ norm measure results in a
two state jerk profile. Since the jerk is an observable characteristic
of the movement, experimental data should be able to confirm
the true nature of the jerk profile. Unfortunately, numerical
computations of jerk by derivative approximation (as done in
this paper) amplify noise inherent in the original recording. This
makes drawing direct conclusions about the nature of the jerk
profile difficult (see jerk approximation in Fig. 6). To overcome
Fig. 6. Overlay ofMJ∞ model with human movement data of a single trial.
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this difficulty we decided to evaluate the error of the models with
respect to the positional data. Future work on this hypothesis
should include recordings of acceleration, which should reduce
noise amplification and possibly make the true jerk profile
apparent.

5. Discussion and future work

In this paper we studied an optimal control policy for achieving
point-to-point ballistic movements using the minimum-jerk
criterion. We focused on minimizing the L∞ norm of jerk (MJ∞) to
achieve a simple bang–bang control policy as opposed to using the
L2 norm (MJ2). We compared the two policies with human motion
data recorded with a manipulandum and showed that the MJ∞
outperforms theMJ2 at predicting ballistic human armmovements.

Determining the precise contributions of the various compo-
nents of the CNS to the control of movement is difficult, since
observations of themotor system’s neural activity in behaving ani-
mals are hard to obtain. However,measurements of externalmotor
behavior are much easier to record. It is natural then to attempt to
leverage the movement data we have to explain what the control
policy used by the CNS may be. Since the movements were per-
formed by well trained individuals in an unperturbed workspace,
it is reasonable to assume that feedback due to movement errors
would be minimal. Furthermore, experimental studies on deaf-
ferented animals have demonstrated that trajectory planning for
fast point-to-point movements is not disrupted (Bizzi, Accornero,
Chapple, & Hogan, 1984) and that proprioceptive or cutaneous
feedback is not necessary for the execution of suchmovements. Be-
cause of the lack of feedback involved with these movements, we
can model these movements as a feed forward control problem.

With this in mind, our proposed optimal control problem was
solved once, and the solution was used for each trial (as done in
Flash and Hogan (1985)). We remind the reader that we are not
proposing that the biological system is performing an optimization
computation each time a movement occurs. Instead, we are
suggesting that evolution has already performed the optimization
process via some cost function and arrived at a neuromechanical
system (the human body) with a construction intrinsically built to
minimize jerk.

The selection of a cost function to optimize is crucial and can
result in vastly different control policies. If we assume a cost
function that evolution has used to optimize animalmovement,we
can extrapolate a corresponding control policy. In addition, we can
draw inferences regarding the nature of the biologicalmechanisms
that might implement such a system. Since minimizing the L∞

norm of jerk results in a bang–bang control policy, we can
hypothesize that simple two-state step functions are utilized to
control a biomechanical system. These two-state step functions are
desirable because binary control is simple.

In addition, utilizing two-state control policies have been
shown to be effective in computational models of movement.
Recent computational models of spinomuscular control require
only step functions representing supraspinal inputs in order to
drive a network to achieve human like movements (Bullock &
Grossberg, 1988; Raphael, Tsianos, & Loeb, 2010). Other models
have shown that central pattern generators can be driven via step
inputs (Buchanan & McPherson, 1995).

Similarly, on/off control policies have been observed both in
vivo and in vitro inmultiple vertebrates. Complexmovements such
as walking can be activated by gross on/off stimulation of groups
of neurons in the brain stem or the spinal cord. The experiments
reported in Pearson (1976) induced various patterns of locomotion
in a spinally transected cat by administering a simple step-like
electrical stimulation of the lower region of the cat’s spinal cord.
The experiments in Hagglund, Borgius, Dougherty, and Kiehn
(2010) showed that fictive locomotor patterns could be induced
with the use of step-like excitation to either the brain stem or
spinal cord ofmice. Classes of neurons in the brain stemand lumbar
regions of the spinal cord of the mice were genetically engineered
to contain channelrhodopsin light gated ion channels. Using this
technique, light stimulation (or lack thereof) served as an on/off
switch for the genetically modified motor system neurons. Gross
‘‘on’’ stimulation to either the brain stem or the lumbar region of
the spinal cord activated a class of neurons in those regions and
induced fictive locomotion patterns. The gross ‘‘on’’ stimulation
was a control signal driving the generation of locomotor patterns.

The computational and animal experiments explained above
indicate that one or more bang–bang type controllers may exist
somewhere in the nervous system. It is still an open question as to
how and where their neural implementations exist. The evidence
cited here suggests that these controllers may exist in supraspinal
centers (Graziano et al., 2002; Raphael et al., 2010), within the
spinal cord (Giszter et al., 1993; Pearson, 1976), or both in the brain
stem and spinal cord (Hagglund et al., 2010). Furthermore, it is
plausible that populations of bursting neurons could implement a
bang–bang control signal (Izhikeivch, 2007). This minimum jerk-
based bang–bang control signal could then be converted to a signal
representing any lower order derivative (acceleration, velocity,
etc.) via integration of the signal. Certain populations of neurons
are known to perform functions akin to time integration (Goldman,
Compte, & Wang, 2009). Integration of a neural signal encoding
velocity would lead to a signal encoding position as happens in
the ocular-motor system (Robinson, 1989; Seung, Lee, Reis, & Tank,
2000). We stress that these suggestions for our control policy’s
neural implementation are merely hypotheses backed by neuro-
scientific evidence.

We suggest several important extensions to this work. As
discussed earlier, to gauge a more accurate jerk profile than that
attained by numerical approximations of higher derivatives, we
propose using a manipulandum device where the jerk profile
can be recorded directly with high bit precision. As shown in
Fig. 1 the jerk profile that we propose has step-like features
and discontinuities. If the jerk profile of human arm reaching
movements has such features, then care must be taken to acquire
and digitize the jerk signal appropriately. Only then can we
effectively compare the MJ∞ jerk profile with the acquired jerk
profile from human subjects.

Another interesting extension would be to investigate how
well MJ∞ models curved movements as done by MJ2 and other
models (Edelman& Flash, 1987; Todorov& Jordan, 1998). Although
the MJ∞ performs very well at modeling straight point-to-point
ballistic movements, and it is likely to perform well with curved
movements, it is possible that more exotic control policies might
be needed to explain more complex movements. With this in
mind, we plan on making simultaneous use of multiple control
policies by switching between them or blending them depending
on the nature of the task at hand. In addition, to achieve a
model that replicates a wider array of human movements (such as
perturbed movements), future research directions should extend
this feed-forward model to include feedback (environmental and
proprioceptive). Finally, to acquire a deeper understanding of the
central nervous system,we proposemodeling ballisticmovements
with neuronal networks in order to test the control signal schemes
outlined in this work and their potential neural implementations.
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