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Abstract— Understanding brain connectivity patterns that may spontaneously emerge in response to biofeedback training remains of great interest 

to neuroscientists. Along those lines, Brain Computer Interfaces (BCI) mediated by EEG signals that dynamically evolve as the user attempts to 

control a cursor on the screen, has helped identify brain areas recruited during the learning process. There is an adaptive process that takes place 

between the computer algorithm and the solution that the brain arrives at to mentally control the instructed cursor direction through intentional 

thoughts. Using new personalized techniques, we here address how different participants learn during this co-adaptive process, in which bodily 

motions are curtailed in favor of mental motion. First, the person uses mental imagery of directional movements to attempt the cursor control, but as 

the computer algorithm and the brain work together to gain accuracy, this mental imagery reportedly reaches a different level of abstraction. Indeed, 

each participant reports that there is a point when they are mentally controlling the external computer cursor, yet no longer imagining the movement 

direction. We compared the evolution of a participant without proprioception owing to neuronopathy, to that of participants with intact afferent 

nerves. We found fundamentally different patterns of activation between the participants with intact bodily kinesthetic reafference and the participant 

without proprioception. In the latter, the connectivity patterns were far higher and distributed across the entire brain during the initial stages of 

learning, in contrast to the other participants. Furthermore, the changes across learning stages were more pronounced in the neuronopathy case. We 

infer from this result that in the absence of kinesthetic reafference, heavy reliance on other senses like vision and hearing, may endow the brain with 

higher capacity to handle the excess cognitive load. In the absence of proprioception, we may be able to quantify this capacity through the evolution 

of the stochastic patterns of EEG variability within BCI co-adaptive learning. 

 
Index Terms—Brain Computer Interface, EEG, weighted directed graphs, brain connectivity, earth mover’s distance. 

 

I.  INTRODUCTION and RELATED WORK 

Every purposeful action self-generated by our nervous system is 

guided by mental intent and, when appropriate, feedback 

continuously flows from the peripheral (PNS) to the central nervous 

system (CNS). Under such conditions, mental intent to perform an 

action results in physical volition, controlling through that action, our 

surrounding environment at will 1-3. In this sense, we have agency 

over our thoughts, decisions and voluntary actions because we can 

clearly establish a link between the cause of our impending actions 

and their possible sensory consequences. In intact nervous systems, 

this map between actions and sensory consequences seems to develop 

from infancy and be adapted and updated as we continue to learn 

largely beneath awareness, to master a predictive code that helps 

overcompensate for transduction and transmission sensory-motor 

delays throughout the nervous systems 4,5. Here we explore some of 

the activation patterns that take place as participants successfully 

master the volitional control of an external cursor’s direction at will. 

II. MATERIALS AND METHODS 

A. Participants 

This study involved twenty-one college level participants (13 males 

and 8 females, ages: 29.00 ± 7.01). Among these, we had one special 

participant IW, a 61-year-old left-handed man who lost 

proprioception at 19 and has not recovered from this neuronopathy 

since then 6-9. He cannot sense touch, pressure, body position or body 

motion and as such, does not have kinesthetic reafference. He lacks 

sensory and motor reflexes. All the participants in this study signed 

the consent form approved by the Rutgers University Institutional 

Review Board (IRB) in compliance with the Declaration of Helsinki. 

B. Experimental Setup 

Figure 1 shows the setup. Subjects wore a cap to measure electro-

 
 
 

encephalographic (EEG) activity recording 64 channels at a sampling 

rate of 256 Hz. The BioSemi System uses an international 10-20 

convention. Details on this high resolution biopotential measurement 

found at http://www.biosemi.com/index.htm. The EEG activity is 

recorded in response to imagining the instructed direction (left or 

right) as if intending to move the computer cursor towards left or right. 

Quite often, selective functionality is set a priori for brain regions of 

interest (RoI) and those regions are fine-tuned based on the task to be 

performed. Here, we let the (BCI) signal evolve in response to the 

Bayesian sparse probit classifier, which automatically fine-tunes the 

brain region that maximizes performance accuracy 10,11. In this sense, 

the RoI self-emerges as the brain learns the cursor control task 12. 

The task is divided into three phases: (1) training, open-loop (no 

feedback from the performance) where we estimate the currents but 

do not yet train the classifier algorithm; (2) training, closed-loop (real 

time feedback from the performance) where both the participant and 

the classifier algorithm are trained; (3) testing, based on real-time 

loops connecting our sensory inputs and motor outputs, whereby the 

efferent flow of information from the CNS to the PNS is constantly 

updated. Part of the update relies on kinesthetic reafference 4 and 

proprioception. In the absence of these re-entrant activity, we know 

that the brain learns to sensory substitute and e.g. vision and auditory 

feedback help compensate for the proprioceptive loss. Indeed, the 

case study of Ian Waterman (IW) brought the field of computational 

modeling of neuromotor control to a new level, when it became 

apparent that it was possible to sensory-substitute the absent motor 

reafference with visual and / or auditory inputs to update the motor 

commands and perform activities of daily living. 

We had the opportunity to test IW within the context of co-adaptive 

learning using a Brain Computer Interface and here ask what the brain 

activity patterns would be in relation to participants who had intact 

proprioception. In this BCI context, the task was to learn to mentally 

control the external computer cursor and correctly move it to the left 

or to the right, upon instruction. Random order of instructions allowed 

the brain to accumulate activity in response to errors and successes, 

http://www.biosemi.com/index.htm
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such that gradually, working with the computer adaptive algorithm, it 

was possible to entirely phase out the algorithm and let the brain 

activity alone be the control signal. In the case of IW, we were curious 

to quantify this process, given that in controls we already knew that 

they were not only capable of learning the cursor control task under 

visual guidance, but most important was that the success strategy 

automatically transferred to the auditory domain 12. In other words, 

all participants in our prior work were exclusively trained through 

visual input, yet when probed with eyes closed and instructed through 

audio, they all had 100% accuracy of cursor control: if instructed 

right/left, the cursor moved to the right/left even though auditory 

training never took place. 

How would the visually guided version of this task be performed by 

IW? In the absence of bodily kinesthetic reafference and his well-

documented heavy reliance on visual feedback, would his brain 

patterns differ from neurotypical participants? 

In the closed loop training phase, subjects were provided with 

visual feedback displayed on the screen at the end of every trial with 

a text string (“SUCCESS” or “FAILURE”) based on whether they 

correctly moved the cursor to the intended (instructed) direction. This 

BCI updates the classifier within every trial. There are 7 blocks of 30 

trials each, performed in the closed loop phase of training, which lasts 

35 minutes. Further details on the classifier are described in 12.  

This kind of closed loop training activity, whereby EEG signals 

adapt to the feedback and trains the classifier with every trial reveals 

the learning progression through the EEG activity. In this paper, we 

focus our analyses on the data from the closed-loop version of training, 

having 7 blocks of 30 trials each. Here, initially the algorithm (sparse 

probit classifier 10-11) dominates, then gradually the brain dominates, 

while the classifier adapts to the intended brain activity that 

maximizes the accurate (volitional) control of the cursor’s direction. 

We coin the first 80 trials Machine Phase, trials 65-145 Hybrid Phase 

and trials 130-210 Brain Phase. In the Machine Phase the algorithm 

dominates, in the Hybrid Phase we have the mixed actions of the brain 

and the classifier and in the Brain Phase, where the brain dominates 

over the algorithm, we interrogate the signals from IW vs. 

representative controls. In this work, we set 15 overlapping trials from 

phase to phase, to relax our prior assumption of independent 

identically distributed (iid) random process for the trial-by-trial time 

series analyses. This also makes smoother transition between different 

learning phases. 

C. Methods 

We focus here on the closed loop training phase (7 blocks of 30 

trials each) free from eye movements, muscle movements, and power-

line frequency artifacts. Pre-processing of this EEG data to remove 

unwanted signals generated from these artifacts was done for a prior 

publication. To that end, we used a standard EEG data pre-processing 

software called EEGLAB 13. Briefly, the 64 channels data is filtered 

in a range of 0.1 to 50 Hz to avoid power-line frequencies captured 

by electrodes at 60 Hz using the function FIR for filtering. To keep 

the values of all channels with respect to the same ground truth and 

comparable to each other, we need to do re-referencing of electrodes. 

EEGLAB was used again to do the re-referencing and electrode Cz 

was chosen as the reference electrode. Electrode Cz’s activity was 

subtracted from every electrode and was eliminated thereafter, 

leaving 63 electrodes. 

Finally, we performed independent component analysis (ICA 14) to 

separate all the additive components of the signals we harnessed from 

the leads (channels). It is assumed that the components are statistically 

independent of each other. The purpose of doing ICA decomposition 

is to get rid of the artifacts remaining in the signals after filtering for 

instance, eye blinks, ear muscle movement etc. To perform ICA 

decomposition, we used EEGLAB built-in function called RunICA. 

There are data from 63 electrodes for 210 trials (7x30), where each 

trial has 768 frames. Given, the sampling frequency of 256 Hz, each 

trial lasts for 3 seconds and each block is 90 seconds (1.5 minutes) 

long. Overall, we have the brain activity for 10.5 minutes (1.5x7) from 

the pre-processed data. These pre-processing steps along with 

 
Figure 1: Experimental set up in which the subject sat comfortably in front 

of a computer screen. EEG data was recorded from 64 channels in response 

to the imagination of a visually instructed direction (arrow). The task was 

to control the arrow by moving it to the visually instructed direction (left 

or right arrow on the screen). Bottom row is the timeline of the task (in 

seconds.) Each trial is 10 seconds long (7 blocks with 30 trials each). 

 

 
Figure 2: Analytical pipeline. (A) Raw EEG data (64 channel) collected 

for 1 sample trial. Pre-processing done in EEGLAB toolbox using the steps 

shown to remove artifacts and noise components in 63 channels (one for 

re-referencing.) (B) Peak extraction and amplitude scaling (C) to obtain 

“micro-movement” spike trains (MMS). (D) Pairwise maximum cross-

coherence matrix with corresponding lead-lag and frequency matrices 

(constructed with convention that node from row i leads node from column 

j) provides adjacency matrix to represent weighted directed graphs and 

perform network connectivity analyses in (E). (F) Sample brain 

connectivity visual using the connectivity metrics we obtained in E. 
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complete data analysis pipeline further are summarized in Figure 2. 

The EEG data obtained after pre-processing consists of time series 

of peaks and valleys with varying amplitude and timing.  We fit the 

frequency histogram from all peaks across all trials of a person to the 

best continuous family of distributions in a maximum likelihood 

estimation MLE sense (with 95% confidence.) Then the empirically 

estimated mean is used to mean shift the original peak amplitude data 

and centered at the empirically estimated mean. In this case, the 

continue Gamma family fit well in an MLE sense. These fluctuations 

in signal amplitude are scaled to the real valued interval [0,1] using 

the equation below 15,16: 

 

𝑁𝑜𝑟𝑚𝑃𝑒𝑎𝑘 =
𝑃𝑒𝑎𝑘

𝑃𝑒𝑎𝑘+𝐴𝑣𝑟𝑔𝑚𝑖𝑛−𝑡𝑜−𝑚𝑖𝑛
  (1) 

 

They give rise to a new waveform called the micro-movements 

spikes (MMS.) These MMS are used as the input to a random process 

under the general rubric of Poisson random process, with relaxed iid 

assumption. We sample continuously in identically sized blocks with 

overlapping sliding window and estimate the Gamma parameters 

(shape and scale), thus tracking their shift over time 15. The MMS 

capture the absolute deviations from the empirically estimated mean, 

thus reducing the number of frames. To maintain the original number 

of frames, we zero-pad those frames which are not picked up and this 

enables e.g. pairwise cross-coherence analyses using nodes’ activities 

using equal number of the original frames for each node. 

The MMS datatype offers an individualized approach to work with 

these EEG signals as they account for all possible allometric effects 

due to different anatomies of participants heads 16.  

We then use the MMS trains to build adjacency matrices and 

borrow concepts from weighted connected graphs17 to build 

interconnected, dynamically evolving networks and perform 

connectivity analyses. To that end, we use the brain connectivity 

toolbox in Matlab 17 and derive connectivity metrics. 

The adjacency matrices in Figure 2D were obtained from pairwise 

cross-coherence analyses on the leads (nodes) by choosing the 

maximum cross-coherence value and its corresponding frequency and 

phase lead values. This procedure yielded 3 63 x 63 matrices for each 

trial. Each entry in the matrix represents the maximum cross-

coherence value between the pair of lead nodes (given by row i and 

column j) for that trial. The phase lead-lag matrix gives the phase 

value (in degrees) when maximum cross-coherence occurs between 

the corresponding pair of nodes. Similarly, the frequency matrix gives 

the frequency value when the maximum coherence occurs between 

the corresponding pair of nodes. We adopt the convention that 

positive leads indicate row node i leads the column node j. These 

adjacency matrices are then used to build the weighted directed 

graphs and we derive connectivity metrics such as Betweenness 

Centrality, Clustering Coefficient, InDegree, OutDegree, 

TotalDegree, InStrength, OutStrength, TotalStrength, Modularity, etc. 

These connectivity metrics and others involving phase locking value 

(PLV) 18 are used to generate connectivity visuals with the help of 

Brain Net Viewer (BNV) toolbox 19 as in Figure 2F using as input 

the connectivity metrics that we obtained. The node size is 

represented by OutDegree, the node color by module participation, 

edge thickness and direction by value of phase under our convention 

i→j, and edge color may be used to e.g. represents coherence value. 

These brain connectivity visuals offer a glance at the differences in 

connectivity with and without proprioception. In addition, we further 

investigate the amount of dynamic change in brain activity over the 

course of learning. To that end, we use a distance metric measuring 

the amount of effort that it takes to convert one frequency histogram 

to another 20,21, whereby the MMS peaks of a trial produce the 

histogram for that trial. Specifically, we use the earth mover’s 

distance (EMD) metric between histograms produced by two 

consecutive trials, thus building a series of numbers reflecting the 

pairwise similarity of spiking activity from moment to moment. In 

this context the EMD reflects stochastic change in the brain activity 

(via the change in distributions of MMS) in the amplitude domain. 

We group the 63 nodes according to 13 conventional brain regions: 

LPF- Left PreFrontal, LF- Left Frontal, LC- Left Central, LT- Left 

Temporal, LO- Left Occipital, LP- Left Parietal, : RPF- Right 

PreFrontal, RF- Right Frontal, RC- Right Central, RT- Right 

Temporal, RO- Right Occipital, RP- Right Parietal, CC- Corpus 

Callosum).  

III. Results and Discussion 

Figure 3 shows the connectivity visuals for Ian Waterman (IW) 

derived from the Brain phase and shown in relation to that phase for 

two representative participants, JN a biologist and IY a 

Mathematician. IW has a densely connected network compared to JN 

and IY in the initial learning and this density evolved throughout the 

co-adaptive learning. There are differences in the rate of change in 

learning as well (Figure 4), whereby IW shows higher changes 

according to the EMD for each learning phase. Figure 4 shows this 

evolution for the participants in Figure 3.  

 

 
Figure 3. Evolution of brain’s network activity in two representative 

participants, a mathematician and a psychologist in relation to IW. Left 

hand panels show the initial brain activity in the first block (machine) vs. 

the activity in the last block (brain) using the connectivity output for PLV-

based adjacency matrix to build the networks. Right hand graphs show the 

evolution in network topology through the degree distributions reflecting 

the number of edges K in the network vs. the number of nodes with K edges 

evolving for the 7 blocks. 

 



Page 4 of 4 

 
Figure 4: Amount of change in brain activity for IW in relation to the 

representative participants of Figure 3. EMD metric was used to build 

these matrices using the orderly trial by trial “effort” to change one MMS 

histogram into another. Each column represents a learning phase. IW 

shows more changes in trial-by-trial probability distribution of MMS, as 

quantified by the EMD metric (unitless quantity from normalized MMS 

coded in the color bar.) 

IV. CONCLUSION 

This paper tracked the neuro-dynamics of co-adaptive learning in 

the context of BCI, as neurotypical participants mastered the control 

of an external cursor direction on a computer screen. The task probed 

two randomly instructed directions (left vs. right, randomly presented 

with equal probability) guided by accuracy, visually displayed. Based 

on this visual outcome (success or failure) the participant’s brain in 

tandem with the algorithm gradually transitioned from machine to 

hybrid to purely brain signal-based control. The comparison of this 

process to IW revealed large differences in connectivity patterns and 

in the amount of change that ensued from trial to trial. Specifically, 

IW showed higher connectivity patterns all throughout the learning 

process and higher moment-by-moment changes in MMS variability 

(stochastic change.)  

We interpret these results as higher cognitive load and higher 

capacity to process sensory signals when sensory substitution (by 

visual information in this case) is used to compensate for the loss of 

re-afferent feedback. Although this task does not require overt 

movements, covert minute motions across the body exist to sustain 

the body upright, to maintain the body posture steady throughout the 

experiment. In the absence of proprioception, IW must do that 

deliberately through vision, in addition to utilizing the visual input to 

track accuracy and master the cursor control at will. Indeed, he 

mastered the control as did the other neurotypical participants with 

intact proprioception. Yet the excess activity and changes in patterns 

of variations, lead us to suggest that he mastered this feat under much 

higher cognitive load than the average person would. Since his 

capacity for cognitive control is not diminished by the absence of 

kinesthetic afference and the loss of proprioception, we posit that his 

brain must be tapping into resources that we do not often use -as 

instantiated by the brain activity patterns.  

There is a myth that we only use 10 percent of our brain, as not all 

neurons fire during the execution of complex motions and long 

mathematical calculations. Recruiting the full brain for a seemingly 

simple cursor control task such as this one – a task that requires no 

overt bodily motion or no complicated cognitive calculations, would 

then be for IW analogous to recruiting all muscles while sprinting, or 

while performing highly complex mathematical computations. 

Perhaps IW’s brain does that while his nervous system sensory 

substitutes. In so doing, his brain may have mastered the use of the 

other 90 percent. Further research will help us better unravel this 

mystery about “The Man Who Lost His Proprioception” 6 and 

contributed to our enlightenment on how the brain can attain agency. 
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