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This script generates 3 angles alpha, beta, gamma within the proper boundaries to first form a rotation 

matrix in SO(3)  by first rotating around X, then around Y and then around Z. This is the Euler angle 

sequence that the Polhemus system that we have in the lab uses.  

The function Angles2Matrix takes in the 3 angles within the proper bounds and outputs an element M of 

SO(3) with Det = 1, and inverse of M equals the transpose of M as we have seen before. Try some 

examples and compute det(M), M’ and then inv(M), M’ M or M inv(M) gives eyes(3) the multip identity 

of the group. 

>>     alpha(i) = -pi + 2*pi*rand;     beta(i) = pi*rand;     ganma(i) = -pi + 

2*pi*rand; 

        %Convert from Euler to Quat 

    [ M(:,:,i) ]=Angles2Matrix( alpha(i), beta(i), ganma(i) );     

M = 

    0.0392    0.9762    0.2133 

    0.0856    0.2094   -0.9741 

   -0.9956    0.0564   -0.0754 

>> det(M) 

ans =     1 

>> M'*M 

ans = 

    1.0000         0         0 

         0    1.0000   -0.0000 

         0   -0.0000    1.0000 

>> inv(M)*M 

ans = 

    1.0000    0.0000   -0.0000 

   -0.0000    1.0000   -0.0000 

         0    0.0000    1.0000 

alpha =    1.1419 

>> alpha*180/pi 



ans =   65.4234 >> beta*180/pi ans =   84.5983 >> ganma*180/pi ans =  143.1967 

Notice that the rotation vector is unitary (one of the standard basis in each case) and that we use the 

active perspective (point rotates). Also notice that the Ry matrix uses the opposite angle because of the 

limits for beta 0    which is always for positive values, whereas ,   are as ,       

If you play with the function Angles2 Matrix and give values to these angles some ambiguities will 

emerge. For example if β is π R(α,β,γ) and R(α+ω,π,γ+ω) entail the same rotation for any arbitrary angle 

ω. 

Given R(α,β,γ), its inverse, clearly is obtained by taking inverses in the opposite order 
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(Because of the ambiguity mentioned above, ignore the π when β=π). 

The next function Get_Angle_Vector takes the Matrix M from SO(3) and outputs the angle-vector 

parametrization that we studied in class in detail. 

[ delta(i), n(i,:) ]=Get_Angle_Vector( M(:,:,i) ); 

>> delta 

delta =    1.9970 %radians 

>> delta*180/pi 

ans =  114.4206 

the angle delta In degrees  

%the unit vector using the norm or its definition in matlab 

n =    0.5659    0.6638   -0.4891 

>> norm(n) 

ans =     1 

sqrt(sum(n.^2)) %.^2 is the element wise power 

ans =     1 

 

You can also now obtain an orthogonal matrix A using the angle-vector param. This formula uses the 

skewed symmetric matrix and the matrix expansion. We did not go over it in class but it essentially 

builds a matrix of det +/- 1, but since we come from an SO(3) element which is a rot operator that 

preserves length and angles,  these parametrizations are interchangeable so we end up with a matrix A 

in SO(3) 

[ A(:,:,i) ]=Build_Ort_Matrix( delta(i), n(i,:) ); 



>> A 

 

A = 

    0.0392    0.9762    0.2133 

    0.0856    0.2094   -0.9741 

   -0.9956    0.0564   -0.0754 

>> det(A) 

ans =    1.0000 

>> A'*A 

ans = 

    1.0000   -0.0000    0.0000 

   -0.0000    1.0000   -0.0000 

    0.0000   -0.0000    1.0000 

>> inv(A)*A 

ans = 

    1.0000    0.0000   -0.0000 

         0    1.0000   -0.0000 

         0   -0.0000    1.0000 

Finally we get to the function Quaternion_From_Angle_Vector which takes the unit vector n and the 

angle delta from M (which are the same as those from A since we constructed A from it) and output the 

angle theta and the unit quaternion 

quat =  0.4757    0.5580   -0.4111    0.5416 

>> norm(quat) 

ans =     1 

We will learn in class today all that we need to know about constructing this quaternion operator to 

rotate vectors in R3 but just notice that we have used the Euclidean norm here to obtain the norm of 

the unit quaternion 

>> sum(quat.^2) 

 

ans =     1 



Notice inside this function the various parametrizations (commented out) that enable us to go from one 

representation to another while preserving the vector length, including from Euler angles to 

quaternions. 

Finally we obtain the angle vector parametrization of the quaternion using the function 

Angle_Vector_from_Quat, which takes a unit quaternion and outputs a unit vector and an angle of 

rotation. 

v =    0.5659    0.6638   -0.4891 

>> theta 

theta =    1.9970 %radians 

>> theta*180/pi 

ans =  114.4206  %degrees 

and these(v, theta) are the same as before, when we computed (delta, n) from M, built A with them and 

then built the quaternion with (delta, n) 

>> n 

n =    0.5659    0.6638   -0.4891 

delta * 180/pi 

ans =  114.4206 

 

 

And here you have our unit vectors v and n (in yellow) along with other ~10,000 randomly generated 

examples to cover the unit sphere, thanks to Euler, Rodrigues and Hamilton. Math is always right! 


