Now onto to the 3D world

Rotations in 3 dimensions

Elizabeth B Torres, Rutgers University,
Psychology Dept IMPS Fall 2011

II RECAP

Rotate Frame

Rotate vector

- Rotations are represented by matrices of the group SO(2)
- Determinant is $1, \mathrm{~A}^{-1}=\mathrm{A}^{\top}$, A. $A^{\top}=I d$
- Passive Convention: Rotations of a frame (fixed point)
- Active Convention: Rotations of a vector (fixed frame)
- One is the transpose of the other (for theta > 0)

ROTATION OF A RIGID OBJECT ABOUT A POINT (DOTTED COORDINATE FRAME IS ATTACHED TO THE RIGID BODY

Can track the rotation path of the Rigid Body

TRAJECTORY OF A RIGID BODY RELATIVE TO A FIXED FRAME

Reaching around a physical obstacle

Linear Transformations

$\left.\begin{array}{c}\text { Affine Matrix, } \mathbf{T} \\ {\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ \text { Eqordinate } \\ 0 & 0 & 1\end{array}\right]} \\ {\left[\begin{array}{lll} \\ \text { Equations }\end{array}\right.} \\ y=z \\ 0\end{array}\right]$

Special Orthogonal SO(2) Group
$A^{\prime}=A^{-1}$
$\operatorname{Det}(\mathrm{A})=+1$

Determinant in 2D = Area inside the Parallelogram From the row vectors of the matrix A

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right)=1 * 4-3 * 2 \\
& R=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \operatorname{det}(R)=|R|=\cos (\theta)^{2}+\sin (\theta)^{2} \\
& =1=\left|R^{\prime}\right|
\end{aligned}
$$

Linear transformation of a square

Determinant in 3D = Volume inside the Parallelepiped from the row vectors of the matrix A

$$
A=\left(\begin{array}{ccc}
\vec{r}_{1} & \vec{r}_{2} & \vec{r}_{3} \\
\downarrow & \downarrow & \downarrow \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) .
$$

Rule of Sarrus

Geometric interpretation of the Determinant in the 3D case:
A linear transformation of a cube, then take the volume of that
$V=$ Area $\cdot h=|\vec{a}||\vec{b} \times \vec{c}| \cos (\beta)$
where $h=|\vec{a}| \cos (\beta)$

$$
V=\|\vec{a} \cdot(\vec{b} \times \vec{c})\|
$$

Recall that:

Dot product measures "parallelness"
Cross Product measures "perpendicularity"

Special Orthogonal SO(3) Group

- Determinant is +1 (Proper Rotations only)
- Transpose $\mathrm{R}=$ the Inverse $\mathrm{R}: \mathrm{R} \cdot \mathrm{R}^{\top}=\mathrm{Id}$
- The product of two orthogonal matrices is orthogonal (all orthogonal matrices form a group O3)
- The set of proper rotations (det +1) is the $\mathrm{SO}(3)$ group
- The cols and rows of SO_{3} matrices are orthonormal

Three parameterizations

 of the SO(3) group- Three Euler Angles

Leonard Euler Swiss

- (Unit) Vector, Angle R($\theta \mathrm{n}$)
- Euler-Olinde Rodrigues (Quaternions)

Sir Rowan Hamilton Irish

Range of Angles

$$
0 \leq \omega<2 \pi
$$

$$
-\pi<\omega \leq \pi \quad \text { The identity lies in the middle of it }
$$

Conventions:
Active Convention (the vector moves, transform the vectors of the space) Passive Convention (the frame moves, transform the frame)

Notation:
α, β, γ
E.g. $R(\alpha, \beta, \gamma)=R(y z) R(\beta y) R(\alpha x)$

$$
\begin{aligned}
& 0 \leq \beta<2 \pi \\
& -\pi<\alpha, \gamma \leq \pi
\end{aligned}
$$

Euler Angles Orthogonal Matrices in SO(3)

$$
R_{\alpha}^{X}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right)
$$

Rotate around X by angle α

Rotate around Z by angle γ

Rotate around Y by angle β

Angle Vector Parameterization:

Statement of the Problem: Given a (rotation) matrix in SO(3) e.g. A(γ, z) find the angle of rotation γ about the unitary vector n

$$
\begin{aligned}
& \text { Unit Vector } \\
& \vec{n}=\left(n_{x}, n_{y}, n_{z}\right) \\
& n_{x}=\frac{R_{32}-R_{23}}{2 \sin (\gamma)} \\
& n_{y}=\frac{R_{13}-R_{31}}{2 \sin (\gamma)} \\
& n_{z}=\frac{R_{21}-R_{12}}{2 \sin (\gamma)}
\end{aligned}
$$

Angle

$$
\cos (\gamma)=\frac{1}{2} \operatorname{Tr}(R)=\frac{1}{2}\left(R_{11}+R_{22}+R_{33}\right)
$$

