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Quaternions in Classical Mechanics

The invention of the calculus of quaternions is a step 
towards the knowledge of quantities related to space 
which can only be compared for its importance, with 
the invention of triple coordinates by Descartes.  The 
ideas of this calculus, as distinguished from its 
operations and symbols, are fitted to be of the greatest 
in all parts of science.
- J. C. Maxwell (1869). Proceedings of the London 
Mathematical Society 3, p. 226.1

Quaternions come from Hamilton after his really good 
work had been done; and, though beautifully 
ingenious, have been an unmixed evil to those who 
have touched them in any way, including Clerk 
Maxwell.
- Lord Kelvin (1892). Letter to Hayward quoted by S. 
P. Thompson (1910), The life of William Thompson,  
Baron Kelvin of Largs. Macmillan, London, vol. II, p. 
1070.2

Quaternions were invented by Sir William Rowan Hamilton as an extension to the complex 
numbers.  Hamilton tried for ten years to create an analog of the complex numbers that had two distinct 
values, i and j, that were both roots of negative one.3  Finally, while he was on a walk with his wife, he 
realized that he needed to have not two but three distinct imaginary units.  Upon making this discovery 
he carved his result on the Broom Bridge in Dublin, which today is immortalized by a commemorative 
plaque.4  Hamilton's defining relation is most succinctly written as:

Soon after discovering quaternions, Hamilton was able to find connections between this new 
algebra and spatial rotations.  Although Hamilton derived his work independently, it had in fact been 
discovered earlier in a nearly identical form by a mostly unknown mathematician by the name of 
Olinde Rodrigues.  Rodrigues in fact had a much stronger grasp on the algebra of rotations and even 
had the beginnings of what would later become Lie algebra.5

Compared to the calculus of vectors, quaternions have slipped into the realm of obscurity.  They 
do however still find use in the computation of rotations.  Many physical laws in classical, relativistic, 
and quantum mechanics can be written nicely using quaternions.  Some physicists hope they will find 
deeper understanding of the universe by restating basic principles in terms of quaternion algebra.6

The unit quaternions form a group that is isomorphic to the group SU(2) and is a double cover 
of SO(3), the group of 3 dimensional rotations.7  As such they are useful for representing rotations in 
both quantum and classical mechanics.  Under these isomorphisms the quaternion multiplication 
operation corresponds to the composition operation of rotations.

1 S. L. Altmann, Rotations, Quaternions, and Double Groups, 1986, page 201
2 Altmann, page 9
3 Altmann, page 12
4 http://en.wikipedia.org/wiki/Quaternion
5 Altman, page 20-21
6 http://www.theworld.com/~sweetser/quaternions/qindex/qindex.html
7 http://en.wikipedia.org/wiki/Quaternion



Construction of quaternions from the complex numbers
The complex numbers can be constructed as an extension of the reals by introducing a quantity 

 with the property .  Every complex number can then be written as  where
  and  are real numbers.  The quaternions can be constructed from the complex numbers in the 

same way.  A new quantity  is defined such that  and the two imaginary units are assumed 
to anticommute so that .  With this new unit a quaternion can be written as  
where  and  are complex numbers.  This sequence can be repeated to generate higher order groups 
but something is lost each time.  Quaternions are not commutative and the next step, the Cayley 
numbers, are not associative.  The next group after the Cayley numbers is no longer a division ring (not 
every number has a multiplicative inverse).8

Quaternion arithmetic
Every quaternion can be written in terms of its basis components

,
with addition defined pairwise and multiplication defined by the following rules:

.9

Quaternions may also be written as an ordered pair of a scalar and a vector
.

A quaternion with only a scalar part is called a real quaternion and a quaternion with only a vector part 
is called a pure quaternion.10  It is customary to use a shorthand notation for writing a quaternion that 
has only a scalar or vector component as if it was simply just a scalar or a vector:

, , and .

In this ordered pair notation the multiplication law can be rewritten as
.11

This can be split into a symmetric and an antisymmetric product
 and

.12

The complex conjugate of a quaternion is  and has the property .13

The norm is  and the multiplicative inverse is .14  Quaternions

with norm 1 are called unit quaternions.

8 R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, 2002, page 17-18
9 J. B. Kuipers, Quaternions and Rotation Sequences, 1999, page 104-106
10 Altmann, page 203
11 Kuipers, page 108
12 http://en.wikipedia.org/wiki/Quaternion
13 Kuipers, page 110
14 Kuipers, page 111-112



If  is a unit quaternion with zero real part then it is easy to see from the multiplication 
rule that .  From this it follows that the units  and  form a group isomorphic to the complex 
plane.  In particular, Euler's relation holds:

.15

The standard rules of arithmetic can be used to extend this result to arbitrary quaternions:
.

Quaternions as a Lie algebra
The quaternions form a continuous group and therefore can be represented by a Lie algebra. 

Any general quaternion can then be formed from the generators of the Lie algebra via exponentiation.16 
To make the discussion easier we will temporarily change our notation and use the basis elements

  instead of .  The quaternions in the vicinity of identity can then be written

where  are infinitesimal constants and the factor of  has been introduced to make the commutators 
appear the way we want.  The Lie generators are therefore

and the commutators (the Lie algebra) are

.17

The subgroup of unit quaternions is given by setting .  In this case the  generator is not used 
and the Lie algebra is given by  which is exactly the same Lie algebra as that for 
three dimensional rotation.18  The group of unit quaternions is therefore isomorphic to the group of 
three dimensional rotations.

The Lie group is computed from the Lie algebra via exponentiation, so a general group element 
is given by .  Using Euler's formula and the fact that the  are pure unit quaternions, this can be 
written as

.
Using the isomorphism between unit quaternions and three dimensional rotations shows that a rotation 
by the angle  about the axis  is represented by the quaternion , which is known 
as the Rodrigues quaternion.  In this context the quaternion parameters are known as Euler-Rodrigues 
parameters.19  The conjugate of the quaternion then gives the inverse rotation, as can be seen by 
negating .

Using quaternions to rotate vectors
The group of unit quaternions have the same algebra as the three dimensional rotations so it is 

reasonable to assume that they can somehow be used to rotate vectors.  This cannot be done with the 
tools that have so far been developed because we can compose rotations (via quaternion multiplication) 
but we have not yet devised a way for a quaternion to operate upon a vector.  The way to solve this 
problem is to turn the vector into a rotation.  Each unit vector can be considered as an axis of rotation 
and the quaternion that represents rotation about that axis can be associated with the vector.  For 

15 http://en.wikipedia.org/wiki/Quaternion
16 Goldstein, Poole, Safko, Classical Mehanics Third Edition, 2002, page 612
17 Gilmore, page 121
18 Gilmore, page 121-124
19 Altmann, page 20



simplicity we take the angle of rotation to be .  We therefore have a map between vectors and 
rotations (unit quaternions) defined as

,
where the last term is a quaternion.20

To rotate this vector we need to devise a scheme for turning a rotation about one axis into a 
rotation about another axis.  This is accomplished by the similarity transform .  This 
transform serves as a change of coordinates so that rotation about the  axis becomes rotation about the

 axis.  We have thus accomplished the goal of rotating the vector .21  Since real numbers always 
commute with quaternions, the same equation can also be used for vectors that are not of unit length. 
The general rotation equation is then

.
This quaternion representation of rotations has advantages over the competing methods of Euler 

angles and orthogonal matrices.  Given a rotation in quaternion notation it is easy to find the angle and 
axis of rotation, which is difficult to do with Euler angles or matrices.  In fact, the easiest way to create 
a rotation matrix from an axis and angle is to use quaternions.  Quaternions also avoid the gimbal lock 
(discontinuities) of Euler angles.  Unlike matrices, quaternions always represent orthogonal 
transformations even in the face of numeric instability.  For these reasons, quaternions are widely used 
in computer graphics and navigation systems.22

In addition to rotations, quaternions can be used to compute reflections.  If  is a unit vector 
then the reflection of a vector  across the plane normal to  is given by .  Two 
reflections in sequence define a rotation and this rotation is computed as

where  is the angle between  and .  The composition of reflections is therefore equal to a rotation 
by an angle  about the axis .23

The topology of quaternion rotations
The group of unit quaternions has the same Lie algebra as the group of 3-dimensional rotations 

(also known as SO(3)) but there is a fundamental difference: each element of SO(3) corresponds to two 
unit quaternions, Q and -Q.  This can be seen by taking a look at the rotation recipe

.
This equivalence is expressed by saying that the unit quaternion group is a double cover of SO(3).24 
The resulting difference in topology explains why quaternions don't suffer from the gimbal lock of 
Euler angles and other representations.

To visualize the topology of rotations imagine a solid ball of radius .  The points in this ball 
each correspond to a rotation with the direction from the origin representing the axis of rotation and the 
distance from the origin representing the angle of rotation.  Since a rotation by  and a rotation by  
are equivalent, the antipodes of the surface of the ball need to be identified with each other.  The ball 
we have set up therefore does not depict rotation in a continuous way – the antipodal points of the ball 
are considered to be the same even though they are far apart in our representation.25  This lack of 
continuity is the source of the gimbal lock of Euler angles and the axis-angle representation.

The problem can be fixed be considering a second ball superimposed upon the first with 

20 Altmann, page 214-215
21 Altmann page 214-215
22 http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
23 W. B. Heard, Rigid Body Mechanics, 2006, page 25
24 Heard, page 35
25 http://en.wikipedia.org/wiki/Rotation_group#Topology



coordinates that are a mirror image of the first.  The two surfaces are glued together so that a rotation 
by  on the one ball is connected to the corresponding rotation by  on the other.  This object is 
equivalent to , the three-dimensional sphere (in the same way that two discs glued together form the 
two-dimensional sphere ).  The topology is now represented by a simply connected and continuous 
shape in four parameters ( )26 but the price paid is that there are now two 
points corresponding to each rotation.  This is the topology of the unit quaternions and of SU(2), the 
2x2 special unitary matrices.

Despite its more elegant structure (  instead of a strangely connected hemisphere of ), there 
is a very nonintuitive property of unit quaternions – namely the fact that the quaternion representing 
rotation by  is -1 as can be seen by substituting 2  into our previously derived formula:

.
In order to get back to 1 we need a rotation by .27  This double valued nature of unit quaternions is 
in a strange way related to certain unwinding problems.  For example, consider a coffee cup attached to 
the walls by an elastic band.  When the coffee cup is rotated by  the elastic bands will get wrapped 
up.  They can be untangled but no matter what is done there will always be a twist in the bands.  If the 
cup is now rotated another  in the same direction it will be possible to completely untangle the 
bands with no remaining twist.28  This is just one of many examples where a rotation by  is needed 
to get back to the identity.  Similar issues arise in quantum mechanics in regard to the electron spin.

The matrix representation of the quaternion group
Quaternions can be represented in the form of 2x2 complex or 4x4 real matrices in such a way 

that matrix multiplication corresponds to quaternion multiplication.  The 2x2 complex representation is

,

which can be conveniently written as

where  is the identity matrix and the  are the Pauli spin matrices.29  In this form the determinant of 
the matrix is equal to the square of the norm of the quaternion and the matrix transpose corresponds to 
quaternion conjugation.30  The four components of this matrix are called the Cayley-Klein parameters

:31

The Cayley-Klein parameters satisfy the relation  and . In this context the group of unit 
quaternions is called SU(2), the 2x2 special unitary matrices.

The representation as a 4x4 real matrix is

,

which is a useful way to compute quaternion products:

26 Heard, page 35
27 Altmann, page 22-24
28 http://en.wikipedia.org/wiki/Orientation_entanglement
29 Gilmore, page 17
30 http://en.wikipedia.org/wiki/Quaternion
31 Heard, page 31



.32

The rotation operator  can be represented as the 3x3 real matrix

.33

This is a convenient way to generate a rotation matrix from an axis/angle representation.  Notice that  
and  both correspond to the same rotation matrix .  This is due to the fact that the group of 
quaternions is a double cover of SO(3), the group of special orthogonal matrices.

The mechanics of quaternion rotations
Suppose the that orientation of a body is represented as a quaternion rotation so that  

where  is a vector in fixed space coordinates and  is a vector in body coordinates.  It is then possible 
to compute the angular velocity in terms of the quaternion parameters.  The derivative of  is 
(assuming  is constant)

.
Substituting to express this in terms of fixed coordinates gives

,

.

The scalar part of  happens to be zero because Q is a unit quaternion, so

.
Substituting this into the above gives

which is just the antisymmetric product of  and .  As shown above, the antisymmetric product is 

just the vector cross product, so  where .  Comparing this to the expression 

for angular velocity  it is clear that  so that
.34

In terms of components the relation is

.35

In terms of the Cayley-Klein parameters this is written as

.36

32 Heard, page 22
33 Heard, page 24
34 http://audiophile.tam.cornell.edu/~als93/quaternion.pdf
35 Heard, page 49
36 A.I. Lurie, Analytical Mechanics, 2002, page 139



Another way to rotate – Möbius transformations
There is one more way to represent rotations of 3-dimensional unit vectors.  The unit vectors sit 

on the surface of the Riemann sphere, which is a unit sphere centered on the origin of the complex 
plane.  The points on the sphere are identified with the points on the complex plane through 
stereographic projection.  A line is drawn from the north pole to each point on the sphere.  The point 
where the line intersects the complex plane is identified with the point where the line intersects the 
sphere.  Under this mapping the north pole corresponds to , the south pole corresponds to 0, and the 
equator corresponds to the unit circle in the complex plane.37

38

When the sphere is rotated the image of the sphere will be transformed in the complex plane. 
Since the axis of rotation consists of two points on the sphere that do not move, their image in the 
complex plane will not move either.  The orbits of rotation are circles on the sphere and they are circles 
on the complex plane also.39  After a bit of algebra it can be shown that the rotation transforms points in 
the complex plane as

,

where , , , and  are the Cayley-Klein parameters.40  There is a one-to-one correspondence 
between these Möbius transformations and the matrices in SU(2)

such that matrix multiplication in SU(2) corresponds to composition of functions in the complex plane: 
if  then .41

Conclusion
Quaternions appear to be in most cases much clumsier than vectors but they do seem to have 

advantages in the calculation of rotations.  Goldstein's Classical Mechanics said that the Cayley-Klein 
parameters were of great use in the calculation of gyroscopic motion but I was not able to find any 
examples of complete physical problems solved in terms of quaternions - the reference given in 
Goldstein was the only example I could find and it was written in German.  The formula for angular 
momentum was rather elegant in my opinion and in principle it could be used to form the kinetic 
energy term in the Lagrangian.  I suspect though that by the time it was converted to the body 
coordinates and put into a quadratic form it would no longer be so elegant.  On the other hand, Euler 
angles are not too friendly in this context either.  Mainly what I got from doing this project was a 
greater appreciation of the algebra of rotations.

37 Heard, page 31
38 http://en.wikipedia.org/wiki/Riemann_sphere
39 Heard, page 32
40 Heard, page 34
41 Heard, page 35
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